weight model
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 47)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 295 ◽  
pp. 110879
Author(s):  
Danyan Chen ◽  
Junhua Zhang ◽  
Bo Zhang ◽  
Zhisheng Wang ◽  
Libo Xing ◽  
...  

Author(s):  
C. Najjaj ◽  
H. Rhinane ◽  
A. Hilali

Abstract. Researchers in computer vision and machine learning are becoming increasingly interested in image semantic segmentation. Many methods based on convolutional neural networks (CNNs) have been proposed and have made considerable progress in the building extraction mission. This other methods can result in suboptimal segmentation outcomes. Recently, to extract buildings with a great precision, we propose a model which can recognize all the buildings and present them in mask with white and the other classes in black. This developed network, which is based on U-Net, will boost the model's sensitivity. This paper provides a deep learning approach for building detection on satellite imagery applied in Casablanca city, Firstly, to begin we describe the terminology of this field. Next, the main datasets exposed in this project which’s 1000 satellite imagery. Then, we train the model UNET for 25 epochs on the training and validation datasets and testing the pretrained weight model with some unseen satellite images. Finally, the experimental results show that the proposed model offers good performance obtained as a binary mask that extract all the buildings in the region of Casablanca with a higher accuracy and entirety to achieve an average F1 score on test data of 0.91.


電腦學刊 ◽  
2021 ◽  
Vol 32 (6) ◽  
pp. 159-167
Author(s):  
Zhan-Jiang Li Zhan-Jiang Li ◽  
Qin-Jin Zhang Zhan-Jiang Li ◽  
Tong-Tong Wang Qin-Jin Zhang


Author(s):  
Septafiansyah Dwi Putra ◽  
Arwin Datumaya Wahyudi Sumari ◽  
Imam Asrowardi ◽  
Eko Subyantoro

2021 ◽  
Author(s):  
Jun Wang

An low-birth-weight model was established with malnutrition during pregnancy. The machanism of LBW underlying in adult diseases was explored.


2021 ◽  
Vol 27 (39) ◽  
pp. 6701-6714
Author(s):  
Bo Li ◽  
Pan-Yu Chen ◽  
Yi-Fei Tan ◽  
He Huang ◽  
Min Jiang ◽  
...  

2021 ◽  
Author(s):  
Dorian VERDEL ◽  
Simon Bastide ◽  
Nicolas Vignais ◽  
Olivier Bruneau ◽  
Bastien Berret

Abstract Background Active exoskeletons are promising devices for improving rehabilitation procedures in patients. In particular, exoskeletons implementing human limb's weight support (WS) are interesting to restore some mobility in patients with muscle weakness. Using active exoskeletons should result in accurate and generic WS but its effect on human motor control will critically depend on the position of the user within the exoskeleton and the characteristics of the control law. Methods The present study aims at improving WS of the upper limb by providing a weight model considering joint misalignments and a control law including feedforward terms learned from a prior population-based analysis. Three experiments are respectively conducted on 29, 17 and 19 participants who performed posture maintenance and pointing movements with the forearm in the sagittal plane. The first two experiments were used to build an accurate WS control law and the third experiment was conducted to compare the effects of different WS control laws on human movement and assess their quality. During these three experiments, kinematic data and eletromyographic activity of elbow flexors and extensors were measured. Interaction forces were measured with a force/torque sensor placed between the human segment and the robot link. Results The introduction of joint misalignments in the WS model allowed to drastically reduce the model errors in terms of weight estimation. The use of a feedforward architecture based on model and errors learned during experiments, coupled to a force feedback, allowed to reduce model tracking errors in both static and dynamic conditions during vertical movements, which induce substantial variations of gravitational torques. Overall, WS did not affect the general kinematic motion parameters of the participants and decreased the activity of antigravity muscles (flexors). However, WS increased the activation of extensors because weight is usually exploited by humans to accelerate a limb downward. Conclusion A new weight compensation model considering joint misalignments was introduced and data showed their prominent role on WS accuracy and homogeneity. Three WS control laws were compared and results indicated that classical control methods were not sufficient to provide an accurate tracking of the weight model during dynamic vertical movements but that introducing simple feedforward terms learned from previous measures could significantly improve WS accuracy. Accordingly, WS reduced significantly activity in flexors in both static and dynamic conditions. Nevertheless, WS tended to increase the activity of extensors, which might be an important factor in a rehabilitation perspective. Indeed, if the present WS control law will be very helpful to allow patients accelerating the arm upward despite some muscle weakness, it may have an opposite effect when accelerating the arm downward. A partial WS controller could thus be more appropriate in rehabilitation applications.


Sign in / Sign up

Export Citation Format

Share Document