scholarly journals ESTIMATION OF CROP WATER REQUIREMENT AND CROP COEFFICIENT OF TOMATO CROP USING METEOROLOGICAL DATA IN PAMPAIDA MILLENNIUM VILLAGE, KADUNA STATE, NIGERIA

2020 ◽  
Vol 4 (3) ◽  
pp. 538-546
Author(s):  
A. Ahmed ◽  
M. A. Oyebode ◽  
H. E. Igbadun ◽  
Ezekiel Oiganji

This report presents a study of crop water requirement and crop coefficient (Kc) for Tomato crop cultivated under irrigation in Pampaida Millennium Village Cluster, Ikara Local Government Area of Kaduna State, Nigeria, during the 2009/2010 dry season. A total of 7 tomato farmers were selected out of 45 farmers for the assessment exercise. Water applied per irrigation and soil moisture contents before and after irrigation was monitored throughout the seasons, while Tomato bulbs were harvested at the end of season and weighed. Average  crop water use were estimated from the soil moisture content using the gypsum block, while daily reference Evapotranspiration (ETo) were computed from weather data using method Hargreaves equation. Crop coefficient values (Kc) were computed as the ratio of crop water use to ETo. The values of crop coefficients and seasonal crop water requirement per irrigation for different growth stages were determined, the computed *Kc values for different growth stage for the tomato crop grown in the study area was found to be between 0.77-1.15, the initial stage (*Kc =0.81; 20 mm/irrigation), crop development stage (*Kc = 1.09; 28 mm/irrigation), mid-season (*Kc = 1.15; 29 mm/ irrigation) and Late stage (*Kc = 0.77; 19 mm/irrigation), hence the mid-season gave the highest Kc value. However, the crop seasonal water requirement was found to be 386mm, which was within the recommended range. The crop coefficients and seasonal water requirement estimated in this study are reliable and could be used in irrigation design and scheduling for Tomato in the study area.

2021 ◽  
Vol 8 (2) ◽  
pp. 143-148
Author(s):  
RAVISH CHANDRA ◽  
SHABANAM KUMARI

This study is about estimation of crop water requirement for rice-wheat and rice-rabi maize cropping system for Pusa Region of Samastipur district of Bihar using CROPWAT model for year 2017-18.The effective rainfall was calculated using USDA S.C. Method. Reference crop evaporation was calculated using meteorological data viz temperature, relative humidity, wind speed and Sunshine using Penman Monteith equation. The meteorological data were collected from university observatory of R.P.C.A.U Pusa. Crop coefficient (Kc) value was taken according to crop growth stages. Effective rainfall and crop water requirement was used for determining net irrigation requirement. The annual crop water requirement of Rice- Wheat cropping system was found to be 904.1 mm whereas the crop-water requirement of Rice- Rabi Maize cropping system was 991.7 mm.


2006 ◽  
Vol 46 (3) ◽  
pp. 405 ◽  
Author(s):  
M. G. O'Connell ◽  
I. Goodwin ◽  
G. M. Dunn

Responses of fruit trees to reduced irrigation in micro-irrigated peach and apple orchards in the Goulburn Valley, Victoria were investigated during the 2000–01 season. Field experiments examined the effects of applying 2 irrigation levels on soil water content, crop water relations, vegetative growth, yield, yield components and fruit quality. Irrigation regimes were 50% and 100% of current management practice where inputs are scheduled from pan evaporation and locally derived crop coefficients. Water was applied to only one side of the tree rootzone in the 50% treatment (0.5I) while the current management practice treatment (1.0I), received water on both sides of the tree. Over the season, the irrigation inputs for peach and apple equated to a crop coefficient of 0.93 and 0.87, respectively. Orchard water use (ETpeach and ETapple) was predicted using reference crop evapotranspiration (ET0) and published crop coefficients (Kc) with adjustment for the fraction of shade cast by the trees on the orchard floor at solar noon (effective canopy cover, ECC). Throughout the season, ECC measured as midday tree canopy radiation interception, remained low for both peach and apple (<35%). ETpeach and ETapple were substantially lower than current water scheduling practices (1.0I treatments). For the 0.5I apple regime, irrigation closely matched ETapple suggesting that these trees were adequately irrigated. This was supported by no detrimental effects on crop production, vegetative growth, and fruit quality measures of the 0.5I irrigation regime. However, in the peach orchard the 0.5I regime reduced fruit volume suggesting that these trees may have been water stressed. Based on ECC, we calculated the full crop water requirement Kc for the peach and apple orchards to be 0.42 and 0.37, respectively. In summary, for the apple orchard, our 0.5I treatment was close to predicted full crop water requirement (ETapple). But for the peach orchard, the ETpeach was greater, albeit slightly, than our 0.5I regime. Taken overall, these results demonstrate that better matching of water application to the evaporative surface of the orchard canopies (i.e. ECC) can substantially reduce irrigation water use in Goulburn Valley orchards. It is also apparent that ECC in these orchards where row spacing is typically 4–5 m can be relatively low.


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Adebayo O Oke ◽  
Olayinka A Omotosho ◽  
Kolawole Ogedengbe

Accurate irrigation planning requires basic information about the soil, environment and the water requirements of the crop to be cultivated. With new variety of a crop comes the physiological characteristics that may be somewhat different from known varieties. Crop Water Requirement (CWR) and Crop Coefficient (Kc) are major factors required in irrigation planning and they vary with crop developmental stages. Four non-weighing Lysimeters (Diameter, 60cm and Depth, 50cm) were used to determine CWR, Kc as well as crop performances under specific conditions. The CWR and Kc of Maize variety (SUWAN-1-SR) were determined across the four developmental stages (Initial, Development, Mid and Late) using the lysimeter system.  The CWR were 58.8, 176.8, 206.0, 59.6 mm and Kc were 1.0, 1.6, 1.4, 0.7 for the respective stages.  In comparison with FAO 56 maize Kc and CWRvalues, SUWAN-1-SR requires more water across the developmental stages and a sum of 501.2mm for the crop cycle. The average yield was 14.1t/ha, while average Water Use Efficiency (WUE) in the Lysimeter plots was 2.68±0.44 kg/m3 at a planting spacing of 40cm x 40cm, The WUE is high confirming the yielding potential of SUWAN-1-SRif given necessary nutrient inputs, and water requirement met. The developed lysimeter can be used to efficiently determine CWR. Keywords -Lysimeter, Crop Coefficient, Crop Water Requirement,  SUWAN-1-SR maize variety


1984 ◽  
Vol 11 (1) ◽  
pp. 4-6 ◽  
Author(s):  
D. K. Pahalwan ◽  
R. S. Tripathi

Abstract Field experiment was conducted during dry season of 1981 and 1982 to determine the optimal irrigation schedule for summer peanuts (Arachis hypogaea L.) in relation to evaporative demand and crop water requirement at different growth stages. It was observed that peanut crop requires a higher irrigation frequency schedule during pegging to pod formation stage followed by pod development to maturity and planting to flowering stages. The higher pod yield and water use efficiency was obtained when irrigations were scheduled at an irrigation water to the cumulative pan evaporation ratio of 0.5 during planting to flowering, 0.9 during pegging to pod formation and 0.7 during pod development to maturity stage. The profile water contribution to total crop water use was higher under less frequent irrigation schedules particularly when the irrigations were scheduled at 0.5 irrigation water to the cumulative pan evaporation ratio up to the pod formation stage.


Sign in / Sign up

Export Citation Format

Share Document