crop water
Recently Published Documents


TOTAL DOCUMENTS

1322
(FIVE YEARS 670)

H-INDEX

57
(FIVE YEARS 17)

2022 ◽  
Vol 261 ◽  
pp. 107373
Author(s):  
Abdur Rahim Safi ◽  
Poolad Karimi ◽  
Marloes Mul ◽  
Abebe Chukalla ◽  
Charlotte de Fraiture

2022 ◽  
Vol 260 ◽  
pp. 107275
Author(s):  
Wooiklee S. Paye ◽  
Rajan Ghimire ◽  
Pramod Acharya ◽  
Abdelaziz Nilahyane ◽  
Abdel O. Mesbah ◽  
...  

2022 ◽  
Vol 260 ◽  
pp. 107245
Author(s):  
Fuqiang Zhang ◽  
Chao He ◽  
Fan Yaqiong ◽  
Xinmei Hao ◽  
Shaozhong Kang

2022 ◽  
Vol 260 ◽  
pp. 107285
Author(s):  
Wanqi Luo ◽  
Mengting Chen ◽  
Yinhong Kang ◽  
Wenping Li ◽  
Dan Li ◽  
...  

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 213
Author(s):  
Guohua Zhang ◽  
Xinhu Li

Shallow groundwater is considered an important water resource to meet crop irrigation demands. However, limited information is available on the application of models to investigate the impact of irrigation schedules on shallow groundwater depth and estimate evaporation while considering the interaction between meteorological factors and the surface soil water content (SWC). Based on the Richards equation, we develop a model to simultaneously estimate crop water consumption of shallow groundwater and determine the optimal irrigation schedule in association with a shallow groundwater depth. A new soil evaporation function was established, and the control factors were calculated by using only the days after sowing. In this study, two irrigation scheduling methods were considered. In Method A, irrigation was managed based on the soil water content; in Method B, irrigation was based on the crop water demand. In comparison with Method B, Method A was more rational because it could use more groundwater, and the ratio of soil evaporation to total evapotranspiration was low. In this model, the interaction between meteorological factors and the SWC was considered to better reflect the real condition; therefore, the model provided a better way to estimate the crop water consumption.


Irriga ◽  
2022 ◽  
Vol 1 (4) ◽  
pp. 687-695
Author(s):  
Carlos Quiloango-Chimarro ◽  
Rubens Duarte Coelho ◽  
Jéfferson de Oliveira Costa ◽  
Rafael Gomez-Arrieta

The crop water stress index (CWSI), an index derived from canopy temperature, has been widely studied as a physiological indicator of plant water status to optimize irrigation in common beans. However, it is not clear how this index could contribute to yield prediction as a decision support tool in irrigation management. This paper aimed to use the CWSI for predicting yield loss in common bean (Phaseolus vulgaris L.) subjected to water stress under drip irrigation. A rain shelter experiment was conducted using a completely randomized design with five replications. The indeterminate growth cultivar TAA Dama was subjected to three irrigation treatments: 100% of the field capacity (FC), 75 and 50% FC from 20 days after sowing (DAS) until the end of the crop cycle. Grain yield was reduced by 42% under 50% FC treatment. Furthermore, stomatal conductance was reduced under this treatment, whereas the CWSI and canopy temperature increased as irrigation levels decreased. The relationship between grain yield and CWSI (R2=0.76, RSME=2.35g) suggests that canopy temperature data could be used to forecast grain yield losses. In conclusion, farmers can have a low-cost, effective technique for making water management decisions in common bean.


2022 ◽  
Vol 65 (1) ◽  
pp. 51-65
Author(s):  
Vivek Sharma ◽  
Abhijit Rai

HighlightsDeficit irrigation negatively affected dry bean yield and yield components.Excess irrigation increased crop ETc but not dry bean yield.Soil moisture fluctuation was greater in the top 0.3 m of the soil profile compared to deeper depths.Crop water production function had a slope of 18.9 kg ha-1 mm-1 and threshold crop evapotranspiration of 171 mm.Dry bean crop was found to be sensitive to water stress (yield response factor Ky = 1.94).Abstract. Under changing climate conditions and declining water resources, understanding crop response to water stress is critical for effective irrigation management. The objectives of this study were to quantify dry bean (Phaseolus vulgaris L., cv. Othello) soil moisture dynamics, crop evapotranspiration (ETc), and yield response factor and to develop dry bean irrigation and crop water production functions (IWPF and CWPF). Five irrigation treatments, i.e., full irrigation (FIT), 75% FIT, 50% FIT, 25% FIT, and 125% FIT, were evaluated using a randomized complete block design (RCBD) with three replications for three years (2017, 2018, and 2019) in the arid to semi-arid intermountain region of Powell, Wyoming. The results showed a significant influence of irrigation on dry bean soil moisture dynamics and ETc. The dry bean crop showed a greater soil moisture fluctuation in the top 0.3 m of the soil profile compared to 0.6 m and at 0.9 m. ETc ranged from 187 to 438 mm, from 190 to 409 mm, and from 217 to 398 mm in the 2017, 2018, and 2019 growing seasons, respectively. A positive two-segment relationship was observed between dry bean seed yield and cumulative irrigation water applied. The average cumulative seasonal irrigation of 310 mm resulted in maximum seed yield. For all three years, the seed yield increased linearly with ETc. Combining the data from the three years resulted in a CWPF with a slope of 18.9 kg ha-1 mm-1 and an offset of 171 mm of ETc (i.e., the ETc required for crop establishment before any seed yield is produced, or threshold ETc). Moreover, the dry bean crop was found to be sensitive to water stress (Ky = 1.94). These results indicated that under the typical semi-arid to arid climate conditions of the intermountain region of Wyoming, deficit irrigation of dry bean may not be a viable strategy because the yield loss outweighs water-saving benefits. Keywords: Dry bean, Crop evapotranspiration, Crop production function, Irrigation water production function.


2022 ◽  
Vol 259 ◽  
pp. 107248
Author(s):  
Francesco Sapino ◽  
C. Dionisio Pérez-Blanco ◽  
Carlos Gutiérrez-Martín ◽  
Alberto García-Prats ◽  
Manuel Pulido-Velazquez

Sign in / Sign up

Export Citation Format

Share Document