scholarly journals Dynamic Water Strider Algorithm for Optimal Design of Skeletal Structures

Author(s):  
Ali Kaveh ◽  
Armin Dadras Eslamlou ◽  
Nima Khodadadi

In the present paper, a dynamic version of Water Strider Algorithm (WSA) is proposed. The WSA as well as the Dynamic Water Strider Algorithm (DWSA) are applied to minimize the weight of several skeletal structures. WSA is a nature-inspired metaheuristic that mimics the territorial behavior, intelligent ripple communication, mating style, feeding mechanisms, and succession of water strider insects. The efficiency of these algorithms is tested by optimizing different truss and frame structures subject to multiple loading conditions and constraints. Comparing the results obtained by DWSA with those of other methods it becomes evident that DWSA is a suitable technique for optimizing the structural design and minimizing the weight of structures while fulfilling all constraints.

2021 ◽  
pp. 107754632110276
Author(s):  
Jun-Jie Li ◽  
Shuo-Feng Chiu ◽  
Sheng D Chao

We have developed a general method, dubbed the split beam method, to solve Euler–Bernoulli equations for cantilever beams under multiple loading conditions. This kind of problem is, in general, a difficult inhomogeneous eigenvalue problem. The new idea is to split the original beam into two (or more) effective beams, each of which corresponds to one specific load and bears its own Young’s modulus. The mode shape of the original beam can be obtained by linearly superposing those of the effective beams. We apply the split beam method to simulating mechanical responses of an atomic force microscope probe in the “dynamical” operation mode, under which there are a stabilizing force at the positioner and a point-contact force at the tip. Compared with traditional analytical or numerical methods, the split beam method uses only a few number of basis functions from each effective beam, so a very fast convergence rate is observed in solving both the resonance frequencies and the mode shapes at the same time. Moreover, by examining the superposition coefficients, the split beam method provides a physical insight into the relative contribution of an individual load on the beam.


Sign in / Sign up

Export Citation Format

Share Document