scholarly journals Effects of ‘rescuer’ rotating time on the quality of chest compressions: 1-minute vs. 2-minute intervals

2019 ◽  
Vol 16 ◽  
Author(s):  
Farhad Gheibati ◽  
Mehdi Heidarzadeh ◽  
Mahmood Shamshiri ◽  
Fatemeh Sadeghpour

IntroductionFatigue can influence the quality of continuous chest compression cardiopulmonary resuscitation (CCC-CPR). This study was conducted to compare the effect of ‘rescuer’ rotating time on the quality of chest compressions at 1-minute and 2-minute intervals.MethodsThe present semi-experimental study was conducted on 70 non-professional ‘rescuers’ as 35 two-person teams using a crossover design. All teams performed eight 2-minute cycles of CCC-CPR with a rotation of 1 minute and 2 minutes. Quality metrics of the chest compression rate, appropriate depth of compression, and total rate of compressions at the end of eight 2-minute cycles were used to assess the quality of the chest compressions.ResultsThe study results showed that the number of chest compressions with an adequate depth performed by the non-professional rescuers in the 1- and 2-minute scenarios wererespectively 118.18 and 100.87. There was no significant difference in the number of chest compressions between the two scenarios at the end of the CCC-CPR, but the number of compressions with sufficient depth in the 1-minute scenario was better than that in the 2-minute scenario.ConclusionThe study showed that although the rate of chest compression had a downward trend in the 1-minute scenario, rescuers maintained 100 to 120 chest compressions after 16 minutes. This means that non-professional rescuers replacement after 1 minute can increase chest compression with sufficient depth.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jakob E Thomsen ◽  
Martin Harpsø ◽  
Graham W Petley ◽  
Svend Vittinghus ◽  
Charles D Deakin ◽  
...  

Introduction: We have recently shown that Class 1 electrical insulating gloves are safe for hands-on defibrillation. Continuous chest compressions during defibrillation reduce the peri-shock pauses and increase the subsequent chance of successful defibrillation. In this study we have investigated the effect of these electrical insulation gloves on the quality of chest compressions, compared with normal clinical examination gloves. Methods: Emergency medical technicians trained in 2010 resuscitation guidelines delivered uninterrupted chest compressions for 6 min on a manikin, whilst wearing Class 1 electrical insulating gloves or clinical examination gloves. The order of gloves was randomized and each session of chest compressions was separated by at least 30 min to avoid fatigue. Data were collected from the manikin. Compression depth and compression rate were compared. Results: Data from 35 participants are shown in Figure 1. There was no statistically significant difference between Class 1 electrical insulating gloves in chest compression depth (median±range: 45 (28-61) vs 43 (28-61) p=0.69) and chest compression rate (113 (67-150) vs 113(72-145), p=0.87) when compared to clinical examination cloves. Conclusion: These preliminary data suggest that the use of Class 1 electrical insulation gloves does not reduce the quality of chest compressions during simulated CPR compared to clinical examination gloves.


2019 ◽  
Author(s):  
Michał Ćwiertnia ◽  
Marek Kawecki ◽  
Tomasz Ilczak ◽  
Monika Mikulska ◽  
Mieczysław Dutka ◽  
...  

Abstract Background: Maintaining highly effective cardiopulmonary resuscitation (CPR) can be particularly difficult when artificial ventilation using a bag-valve-mask device, combined with chest compression have to be carried out by one person. The aim of the study is to compare the quality of CPR conducted by one paramedic using chest compression from the patient’s side with compression conducted from the ‘over-the-head’ position. Methods: The subject of the study were two methods of CPR – ‘standard’ (STD) and ‘over-the-head’ (OTH). The STD method consisted of cycles of 30 chest compressions from the patient’s side, and two attempts at artificial ventilation after moving round to behind the patient’s head. In the OTH method, both compression and ventilation were conducted from behind the patient’s head. Results: Both CPR methods were conducted by 38 paramedics working in medical response teams. Statistical analysis was conducted on the data collected, giving the following results: the average time of the interruptions between compression cycles (STD 9.184 s, OTH 7.316 s, p < 0.001); the depth of compression 50–60 mm (STD 50.65%, OTH 60.22%, p < 0.001); the rate of compression 100–120/min. (STD 46.39%, OTH 53.78%, p < 0.001); complete chest wall recoil (STD 84.54%, OTH 91.46%, p < 0.001); correct hand position (STD 99.32%, OTH method 99.66%, p < 0.001). A statistically significant difference was demonstrated in the results to the benefit of the OTH method in the above parameters. The remaining parameters showed no significant differences in comparison to reference values. Conclusions: The demonstrated higher quality of CPR in the simulated research using the OTH method conducted by one person justifies the use of this method in a wider range of emergency interventions than only for CPR conducted in confined spaces.


2019 ◽  
Author(s):  
Michał Ćwiertnia ◽  
Marek Kawecki ◽  
Tomasz Ilczak ◽  
Monika Mikulska ◽  
Mieczysław Dutka ◽  
...  

Abstract Background: Maintaining highly effective cardiopulmonary resuscitation (CPR) can be particularly difficult when artificial ventilation using a bag-valve-mask device, combined with chest compression have to be carried out by one person. The aim of the study is to compare the quality of CPR conducted by one paramedic using chest compression from the patient’s side with compression conducted from the ‘over-the-head’ position. Methods: The subject of the study were two methods of CPR – ‘standard’ (STD) and ‘over-the-head’ (OTH). The STD method consisted of cycles of 30 chest compressions from the patient’s side, and two attempts at artificial ventilation after moving round to behind the patient’s head. In the OTH method, both compressions and ventilations were conducted from behind the patient’s head. Results: Both CPR methods were conducted by 38 paramedics working in medical response teams. Statistical analysis was conducted on the data collected, giving the following results: the average time of the interruptions between compression cycles (STD 9.184 s, OTH 7.316 s, p < 0.001); the depth of compression 50–60 mm (STD 50.65%, OTH 60.22%, p < 0.001); the rate of compression 100–120/min. (STD 46.39%, OTH 53.78%, p < 0.001); complete chest wall recoil (STD 84.54%, OTH 91.46%, p < 0.001); correct hand position (STD 99.32%, OTH method 99.66%, p < 0.001). A statistically significant difference was demonstrated in the results to the benefit of the OTH method in the above parameters. The remaining parameters showed no significant differences in comparison to reference values. Conclusions: The higher quality of CPR in the simulated research using the OTH method by a single person justifies the use of this method in a wider range of emergency interventions.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Michał Ćwiertnia ◽  
Marek Kawecki ◽  
Tomasz Ilczak ◽  
Monika Mikulska ◽  
Mieczysław Dutka ◽  
...  

Abstract Background Maintaining highly effective cardiopulmonary resuscitation (CPR) can be particularly difficult when artificial ventilation using a bag-valve-mask device, combined with chest compression have to be carried out by one person. The aim of the study is to compare the quality of CPR conducted by one paramedic using chest compression from the patient’s side with compression conducted from the ‘over-the-head’ position. Methods The subject of the study were two methods of CPR – ‘standard’ (STD) and ‘over-the-head’ (OTH). The STD method consisted of cycles of 30 chest compressions from the patient’s side, and two attempts at artificial ventilation after moving round to behind the patient’s head. In the OTH method, both compressions and ventilations were conducted from behind the patient’s head. Results Both CPR methods were conducted by 38 paramedics working in medical response teams. Statistical analysis was conducted on the data collected, giving the following results: the average time of the interruptions between compression cycles (STD 9.184 s, OTH 7.316 s, p < 0.001); the depth of compression 50–60 mm (STD 50.65%, OTH 60.22%, p < 0.001); the rate of compression 100–120/min. (STD 46.39%, OTH 53.78%, p < 0.001); complete chest wall recoil (STD 84.54%, OTH 91.46%, p < 0.001); correct hand position (STD 99.32%, OTH method 99.66%, p < 0.001). A statistically significant difference was demonstrated in the results to the benefit of the OTH method in the above parameters. The remaining parameters showed no significant differences in comparison to reference values. Conclusions The higher quality of CPR in the simulated research using the OTH method by a single person justifies the use of this method in a wider range of emergency interventions.


2013 ◽  
Vol 31 (8) ◽  
pp. 645-648 ◽  
Author(s):  
Soo Hoon Lee ◽  
Kyuseok Kim ◽  
Jae Hyuk Lee ◽  
Taeyun Kim ◽  
Changwoo Kang ◽  
...  

Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Vishal Gupta ◽  
Robert Schmicker ◽  
Pamela Owens ◽  
Elizabete Aramendi ◽  
Ahamed Idris

Introduction: Defibrillators record important information about the quality of chest compressions during CPR. Software made for reviewing defibrillator files automatically annotate and measure chest compression metrics. However, evidence is limited regarding the accuracy of such measurements. Objective: To compare chest compression fraction (CCF) and rate measurements made with software annotation vs. manual annotation of defibrillator files. Methods: This is a retrospective, observational study from the Dallas Fort-Worth site of the Resuscitation Outcomes Consortium. We reviewed chest compression waveforms from the bioimpedance channel of defibrillator recordings (Physio-Control Lifepak 12 and 15, Redmond, WA) of 100 prehospital patients enrolled in the DFW Cardiac Arrest Registry from 9/8/2018 to 3/9/2019. Included cases were ≥18 years, had presumed cardiac cause of arrest, and continuous chest compressions. We assessed chest compression waveforms from the time of initial CPR until the time the defibrillator was removed. A trained reviewer revised the software annotations by marking the start and end of CPR and adding or removing chest compressions. Software annotated and manual reviewer annotated measurements were compared for CCF and rate using intraclass correlation coefficient (ICC) statistical analysis. Results: Mean patient age was 63 years with 59% male. The mean (±SD) duration of CPR was 30.4 ± 10.6 min. The overall mean CCF for files annotated by software vs. manual annotation was 0.64 ± 0.19 vs. 0.86 ± 0.07, respectively, and the ICC was 0.14. For software vs. manual annotation, the overall mean rate was 109 ± 10 vs. 108 ± 10, respectively, and ICC was 0.99. The software misidentified epochs before the start of chest compressions, failed to capture epochs after resuscitation ended, and after return of spontaneous circulation, resulting in low ICC for CCF. The ICC was excellent for compression rate because the software only counted epochs where chest compressions were actually given. Conclusions: Software annotation performed poorly for chest compression fraction and very well for chest compression rate. Defibrillator files must be reviewed and annotated manually before quality of chest compression measurements are calculated.


2019 ◽  
Vol 35 (1) ◽  
pp. 55-60
Author(s):  
Scott Mullin ◽  
Sinéad Lydon ◽  
Paul O’Connor

AbstractBackground:Ambulances are where patient care is often initiated or maintained, but this setting poses safety risks for paramedics. Paramedics have found that in order to optimize patient care, they must compromise their own safety by standing unsecured in a moving ambulance.Hypothesis/Problem:This study sought to compare the quality of chest compressions in the two positions they can be delivered within an ambulance.Methods:A randomized, counterbalanced study was carried out with 24 paramedic students. Simulated chest compressions were performed in a stationary ambulance on a cardiopulmonary resuscitation (CPR) manikin for two minutes from either: (A) an unsecured standing position, or (B) a seated secured position. Participants’ attitudes toward the effectiveness of the two positions were evaluated.Results:The mean total number of chest compressions was not significantly different standing unsecured (220; SD = 12) as compared to seated and secured (224; SD = 21). There was no significant difference in mean compression rate standing unsecured (110 compressions per minute; SD = 6) as compared to seated and secured (113 compressions per minute; SD = 10). Chest compressions performed in the unsecured standing position yielded a significantly greater mean depth (52 mm; SD = 6) than did seated secured (26 mm; SD = 7; P < .001). Additionally, the standing unsecured position produced a significantly higher percentage (83%; SD = 21) for the number of correct compressions, as compared to the seated secured position (8%; SD = 17; P < .001). Participants also believed that chest compressions delivered when standing were more effective than those delivered when seated.Conclusions:The quality of chest compressions delivered from a seated and secured position is inferior to those delivered from an unsecured standing position. There is a need to consider how training, technologies, and ambulance design can impact the quality of chest compressions.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Wojciech Telec ◽  
Tomasz Kłosiewicz ◽  
Radosław Zalewski ◽  
Julia Żukowska-Karolak ◽  
Artur Baszko ◽  
...  

Background. Successful defibrillation is commonly followed by a transient nonperfusing state. To provide perfusion in this stagnant phase, chest compressions are recommended irrespective of arrhythmia termination. Implantable cardioverters-defibrillators (ICD) used immediately after delivery of the shock are capable of pacing the heart, and this feature is commonly activated in these devices. Potential utility of external, transcutaneous postshock pacing in patients with SCA in shockable rhythms has not been determined. This study aimed at presenting an impact of a short-term external postshock pacing (ePSP) on a quality of chest compressions (CC) without compromising them. Methods. The study was designed as a high-fidelity simulation study. Twenty triple-paramedic teams were invited. Participants were asked to take part in a 10-minute adult cardiac arrest scenario with ventricular fibrillation. In the first simulation, paramedics had to resume compressions after each shock (control group). In the second, simultaneous with compressions, one of the rescuers started transcutaneous pacing (TCP) with a current output of 200 mA and a pacer rate of 80 ppm. TCP was finished after 30 seconds (experimental group). The primary outcomes were chest compression fraction (CCF), mean depth and rate of compressions, percent of fully recoiled compressions, and percent of compressions of correct depth and their rate. Results. In both experimental and control group, CCF, mean depth, and rate were similar (84.65 ± 3.67 vs. 85.45 ± 4.95, p = 0.54 ; 55.75 ± 3.40 vs. 55.25 ± 2.73, p = 0.63 ; 122.70 ± 4.92 vs. 120.80 ± 6.00, p = 0.25 , respectively). In turn, percent of CC performed in correct depth, rate, and recoil was unsatisfactory in both groups (51.00 ± 17.40 vs. 52.60 ± 18.72, p = 0.76 ; 122.70 ± 4.92 vs. 120.80 ± 6.00, p = 0.25 , respectively). Small differences were not statistically significant. Moreover, appropriate hand-positioning was observed more frequently in the control group, and this was the only significant difference (95.60 ± 5.32 vs. 99.30 ± 1.59, p = 0.006 ). Conclusion. This difference was statistically significant ( p < 0.01 ). Introducing an ePSP does not influence relevantly the quality of CC.


2020 ◽  
Vol 34 (2) ◽  
pp. 103-109
Author(s):  
Jae-Min Lee ◽  
Hyeong-Wan Yun

This study aims to investigate the improvement in basic CPR quality on the basis of the hip joint angle of the rescuer among students in the Department of Emergency Medical Technology who completed a basic CPR curriculum. In this study, we carried out a comparative analysis using SimPad SkillReporter and Resusci Anne® QCPR® to measure the quality of CPR (depth of chest compressions, full relaxation, compression speed, and more) on the basis of the rescuer’s hip joint angle in accordance with the 2015 AHA Guidelines and conducted chest compressions and CPR 5 times in a 30:2 ratio. It was found that maintenance of the rescuer’s hip joint angle at 90 degrees while compressing and relaxing the chest made a statistically significant difference in both the experimental and control groups. Moreover, this indicated that the closer the hip joint angle was to 90 degrees, the better was the quality of basic CPR. However, there was no significant difference in the hip joint angle, degree of CPR, depth of chest compressions, chest compression speed, chest compression and relaxation percentages (%), accuracy of chest compressions, hands-off time during CPR, and percentage of chest compression time (p > 0.05). Maintaining the hip joint angle at 90 degrees for basic CPR was not significantly different from not maintaining this angle. Nonetheless, good results have been obtained at moderate depth and 100% recoil. Therefore, good outcome and high-quality CPR are expected.


2019 ◽  
Author(s):  
Michał Ćwiertnia ◽  
Marek Kawecki ◽  
Tomasz Ilczak ◽  
Monika Mikulska ◽  
Mieczysław Dutka ◽  
...  

Abstract Background: Maintaining highly effective cardiopulmonary resuscitation (CPR) can be particularly difficult when artificial ventilation using a bag-valve-mask device, combined with chest compression have to be carried out by one person. The aim of the study is to compare the quality of CPR conducted by one paramedic using chest compression from the patient’s side with compression conducted from the ‘over-the-head’ position. Methods: The subject of the study were two methods of CPR – ‘standard’ (STD) and ‘over-the-head’ (OTH). The STD method consisted of cycles of 30 chest compressions from the patient’s side, and two attempts at artificial ventilation after moving round to behind the patient’s head. In the OTH method, both compressions and ventilations were conducted from behind the patient’s head. Results: Both CPR methods were conducted by 38 paramedics working in medical response teams. Statistical analysis was conducted on the data collected, giving the following results: the average time of the interruptions between compression cycles (STD 9.184 s, OTH 7.316 s, p < 0.001); the depth of compression 50–60 mm (STD 50.65%, OTH 60.22%, p < 0.001); the rate of compression 100–120/min. (STD 46.39%, OTH 53.78%, p < 0.001); complete chest wall recoil (STD 84.54%, OTH 91.46%, p < 0.001); correct hand position (STD 99.32%, OTH method 99.66%, p < 0.001). A statistically significant difference was demonstrated in the results to the benefit of the OTH method in the above parameters. The remaining parameters showed no significant differences in comparison to reference values. Conclusions: The higher quality of CPR in the simulated research using the OTH method by a single person justifies the use of this method in a wider range of emergency interventions.


Sign in / Sign up

Export Citation Format

Share Document