scholarly journals A New Dynamic Building Health Monitoring Method Based on the Hilbert-Huang Transform

2014 ◽  
Vol 25 (3) ◽  
pp. 289 ◽  
Author(s):  
Sheng-Chung Su ◽  
Kuo-Liang Wen ◽  
Norden E. Huang
2021 ◽  
Vol 9 ◽  
Author(s):  
Sheng Liu ◽  
Yibo Wei ◽  
Yongxin Yin ◽  
Tangzheng Feng ◽  
Jinbao Lin

Pantograph-catenary system provides electric energy for the subway lines; its health status is essential to the serviceability of the vehicle. In this study, a real-time structural health monitoring method based on strain response inversion is proposed to calculate the magnitude and position of the dynamic contact force between the catenary and pantograph. The measurement principle, calibration, and installation detail of the fiber Bragg grating (FBG) sensors are also presented in this article. Putting this monitoring system in use, an application example of a subway with a rigid overhead catenary is given to demonstrate its performance. The pantograph was monitored and analyzed, running underground at a maximum speed of 80 km/h. The results show that the strain response inversion method has high measurement accuracy, good data consistency, and flexibility on sensor installation. It can accurately calculate the magnitude and location of the contact force exerted on the pantograph.


2021 ◽  
Author(s):  
Yan Liang ◽  
Yi Huang ◽  
Cunbao Ma ◽  
Yihan Guo ◽  
Biyuan Hu ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5070 ◽  
Author(s):  
Liu ◽  
Xu ◽  
Li ◽  
Wang ◽  
Zhang

Piezoelectric (PZT) ceramic elements are often subjected to complex loads during in- service lifetime in structural health monitoring (SHM) systems, and debonding of both excitation actuators and receiving sensors have a negative effect on the monitoring signals. A first systematic investigation of debonding behaviors by considering actuators and sensors simultaneously was performed in this paper. The debonding areas of actuators were set in different percentage range from 0% to 70%, and sensors in 0%, 20%, 40% and 60%. The signal-based monitoring method was used to extract the characteristic parameters of both the amplitudes and phases of received signals. Experimental results revealed that as the debonding areas of the actuators increase, the normalized amplitude appears a quick decrease before 35% debonding area of actuators and then a slow rise until 60% of debonding reached. This may be explained that the 35% debonding turning point correspond to the coincidence of the excitation frequencies of peripheral actuators with the inherent frequency of the central piezoelectric sensor, and the 60% be the result of the maximum ability of piezoelectric sensor. The degrees of debonding of actuators and sensors also have significant influence on the phase angle offset, with large debonding of actuators increases the phase offset sharply. The research work may provide useful information for practical monitoring of SHM systems.


Sign in / Sign up

Export Citation Format

Share Document