Data Disposal and Analysis with Least Squares Collocation in Tall Building Health Monitoring

Author(s):  
Xing-hai Dang ◽  
Yu-ming Wei ◽  
Jian-yun Zhao ◽  
Yu-li Yang
2021 ◽  
Vol 1715 ◽  
pp. 012029
Author(s):  
Sergey Golushko ◽  
Vasily Shapeev ◽  
Vasily Belyaev ◽  
Luka Bryndin ◽  
Artem Boltaev ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 53-61
Author(s):  
E. Mysen

AbstractA network of pointwise available height anomalies, derived from levelling and GPS observations, can be densified by adjusting a gravimetric quasigeoid using least-squares collocation. The resulting type of Corrector Surface Model (CSM) is applied by Norwegian surveyors to convert ellipsoidal heights to normal heights expressed in the official height system NN2000. In this work, the uncertainty related to the use of a CSM to predict differences in height anomaly was sought. As previously, the application of variograms to determine the local statistical properties of the adopted collocation model led to predictions that were consistent with their computed uncertainties. For the purpose of predicting height anomaly differences, the effect of collocation was seen to be moderate in general for the small spatial separations considered (< 10 km). However, the relative impact of collocation could be appreciable, and increasing with distance, near the network. At last, it was argued that conservative uncertainties of height anomaly differences may be obtained by rescaling output of a grid interpolation by \sqrt \Delta, where Δ is the spatial separation of the two locations for which the difference is sought.


2019 ◽  
Vol 19 (1) ◽  
pp. 215-239 ◽  
Author(s):  
Danny Smyl ◽  
Sven Bossuyt ◽  
Waqas Ahmad ◽  
Anton Vavilov ◽  
Dong Liu

The ability to reliably detect damage and intercept deleterious processes, such as cracking, corrosion, and plasticity are central themes in structural health monitoring. The importance of detecting such processes early on lies in the realization that delays may decrease safety, increase long-term repair/retrofit costs, and degrade the overall user experience of civil infrastructure. Since real structures exist in more than one dimension, the detection of distributed damage processes also generally requires input data from more than one dimension. Often, however, interpretation of distributed data—alone—offers insufficient information. For this reason, engineers and researchers have become interested in stationary inverse methods, for example, utilizing distributed data from stationary or quasi-stationary measurements for tomographic imaging structures. Presently, however, there are barriers in implementing stationary inverse methods at the scale of built civil structures. Of these barriers, a lack of available straightforward inverse algorithms is at the forefront. To address this, we provide 38 least-squares frameworks encompassing single-state, two-state, and joint tomographic imaging of structural damage. These regimes are then applied to two emerging structural health monitoring imaging modalities: Electrical Resistance Tomography and Quasi-Static Elasticity Imaging. The feasibility of the regimes are then demonstrated using simulated and experimental data.


2013 ◽  
Vol 694-697 ◽  
pp. 2545-2549 ◽  
Author(s):  
Qian Wen Cheng ◽  
Lu Ben Zhang ◽  
Hong Hua Chen

The key point researched by many scholars in the field of surveying and mapping is how to use the given geodetic height H measured by GPS to obtain the normal height. Although many commonly-used fitting methods have solved many problems, they all value the pending parameters as the nonrandom variables. Figuring out the best valuations, according to the traditional least square principle, only considers its trend or randomness, which is theoretically incomprehensive and have limitations in practice. Therefore, a method is needed not only considers its trend but also takes randomness into account. This method is called the least squares collocation.


1988 ◽  
Vol 128 ◽  
pp. 215-220
Author(s):  
R. Verbeiren

Least-squares collocation is a powerful method for combining interpolation, filtering and parameter determination in one single computational step. We show that the method is applicable to the computation of polar motion values from a very large set of basic observational data. In this study, we use the ILS observations from 1900 to 1978.


2022 ◽  
Vol 9 ◽  
Author(s):  
Hamad Al-Ajami ◽  
Ahmed Zaki ◽  
Mostafa Rabah ◽  
Mohamed El-Ashquer

A new gravimetric geoid model, the KW-FLGM2021, is developed for Kuwait in this study. This new geoid model is driven by a combination of the XGM2019e-combined global geopotential model (GGM), terrestrial gravity, and the SRTM 3 global digital elevation model with a spatial resolution of three arc seconds. The KW-FLGM2021 has been computed by using the technique of Least Squares Collocation (LSC) with Remove-Compute-Restore (RCR) procedure. To evaluate the external accuracy of the KW-FLGM2021 gravimetric geoid model, GPS/leveling data were used. As a result of this evaluation, the residual of geoid heights obtained from the KW-FLGM2021 geoid model is 2.2 cm. The KW-FLGM2021 is possible to be recommended as the first accurate geoid model for Kuwait.


Sign in / Sign up

Export Citation Format

Share Document