scholarly journals Steam Oxidation of Ferritic Heat-resistant Steels for Ultra Supercritical Boilers

2001 ◽  
Vol 50 (2) ◽  
pp. 50-56 ◽  
Author(s):  
Yutaka Watanabe ◽  
Yongsun Yi ◽  
Tatsuo Kondo ◽  
Koshi Suzuki ◽  
Kimio Kano
Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 577 ◽  
Author(s):  
Zhiyuan Liang ◽  
Qinxin Zhao

Steam oxidation of austenitic heat-resistant steels TP347H and TP347HFG at 650–800 °C was investigated. Comprehensive micro-characterization technologies containing Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS) were employed to observe and analyze the oxidation products. Results show that breakaway oxidation behaviors were observed on TP347H at 700 °C and 800 °C. The oxidation kinetics of TP347HFG at 650–800 °C followed a parabolic law. The oxide scales formed on TP347HFG were composed of MnCr2O4 and Cr2O3. A thin and protective Cr-rich oxide scale was replaced by Fe2O3 nodules due to the insufficient outward migration of metallic ions, including Cr and Mn at the subsurface of coarse-grain TP347H. Smaller grain of TP347HFG promoted the formation of the compact Cr-rich oxide scales. At higher temperatures, the incubation period for breakaway oxidation of the Cr-rich oxide scale was much shorter because of quick evaporation of the Cr2O3 oxide scale and the slower outward diffusion of metallic ions via the grain boundaries.


2006 ◽  
Vol 522-523 ◽  
pp. 189-196 ◽  
Author(s):  
Yuji Fukuda ◽  
Masaru Shimizu

Achieving higher plant efficiency in thermal power plants is one of the major global challenges from the viewpoint of reducing carbon dioxide emission levels, particularly in coal-fired boilers, irrespective of the type of coal being burned. In recent times, it has been possible to increase the steam temperature in coal fired ultra supercritical (USC) plants without too much of a cost impact. The temperature has already been increased to 600 for main steam and 610 for reheat steam. The main enabling technology is the development of stronger high temperature materials such as newly developed high Cr ferritic steels and austenitic steels, capable of operating under high stresses at increasing high temperatures. Other key demands for those materials are hot corrosion resistance such as coal ash corrosion in superheater and reheater tubes and sulfidation of waterwall tubes, and steam oxidation resistance. This paper will mainly present the hot corrosion and steam oxidation properties of newly developed high strength heat resistant steels for their application to USC boilers and long-term experience in an actual plant.


2012 ◽  
Vol 53 (6) ◽  
pp. 1090-1093 ◽  
Author(s):  
Yasuhiro Hoshiyama ◽  
Xiaoying Li ◽  
Hanshan Dong ◽  
Akio Nishimoto

2006 ◽  
Vol 46 (5) ◽  
pp. 769-775 ◽  
Author(s):  
Kota Sawada ◽  
Hideaki Kushima ◽  
Kazuhiro Kimura

Author(s):  
Rainer Prader ◽  
Bruno Buchmayr ◽  
Horst Cerjak ◽  
Alexander Fleming ◽  
Jürgen Peterseim

2007 ◽  
Vol 537-538 ◽  
pp. 303-306
Author(s):  
Tamás Bíró ◽  
László Dévényi

This paper shows the result of some metallographical examinations that have been carried out on low-alloyed Cr-Mo-V heat resistant steel. The aim of this research is to present and compare the advantages and disadvantages of the mainly applied metallographical methods. These techniques are optical microscopy, scanning electron microscopy, replica method and special applications of these methods. We have proved that using the investigated methods together gives much more information about the lifetime of the specimen than using these techniques particularly.


2011 ◽  
Vol 47 (2) ◽  
pp. 224-235
Author(s):  
P. V. Yasnii ◽  
P. O. Marushchak ◽  
A. P. Pylypenko ◽  
R. T. Bishchak ◽  
I. M. Zakiev ◽  
...  

1991 ◽  
Vol 40 (6) ◽  
pp. 1147-1163 ◽  
Author(s):  
V.A. Vainshtok ◽  
M.V. Baumshtein ◽  
I.A. Makovetskaya ◽  
I.V. Kramarenko

Sign in / Sign up

Export Citation Format

Share Document