scholarly journals Spliceosomal gene mutations are frequent events in the diverse mutational spectrum of chronic myelomonocytic leukemia but largely absent in juvenile myelomonocytic leukemia

Haematologica ◽  
2012 ◽  
Vol 98 (1) ◽  
pp. 107-113 ◽  
Author(s):  
S. A. Kar ◽  
A. Jankowska ◽  
H. Makishima ◽  
V. Visconte ◽  
A. Jerez ◽  
...  
Blood ◽  
2014 ◽  
Vol 123 (23) ◽  
pp. 3675-3677 ◽  
Author(s):  
Eric Padron ◽  
Sean Yoder ◽  
Sateesh Kunigal ◽  
Tania Mesa ◽  
Jamie K. Teer ◽  
...  

Hematology ◽  
2011 ◽  
Vol 2011 (1) ◽  
pp. 264-272 ◽  
Author(s):  
Mario Cazzola ◽  
Luca Malcovati ◽  
Rosangela Invernizzi

Abstract According to the World Health Organization (WHO) classification of tumors of hematopoietic and lymphoid tissues, myelodysplastic/myeloproliferative neoplasms are clonal myeloid neoplasms that have some clinical, laboratory, or morphologic findings that support a diagnosis of myelodysplastic syndrome, and other findings that are more consistent with myeloproliferative neoplasms. These disorders include chronic myelomonocytic leukemia, atypical chronic myeloid leukemia (BCR-ABL1 negative), juvenile myelomonocytic leukemia, and myelodysplastic/myeloproliferative neoplasms, unclassifiable. The best characterized of these latter unclassifiable conditions is the provisional entity defined as refractory anemia with ring sideroblasts associated with marked thrombocytosis. This article focuses on myelodysplastic/myeloproliferative neoplasms of adulthood, with particular emphasis on chronic myelomonocytic leukemia and refractory anemia with ring sideroblasts associated with marked thrombocytosis. Recent studies have partly clarified the molecular basis of these disorders, laying the groundwork for the development of molecular diagnostic and prognostic tools. It is hoped that these advances will soon translate into improved therapeutic approaches.


EBioMedicine ◽  
2018 ◽  
Vol 31 ◽  
pp. 174-181 ◽  
Author(s):  
Matthieu Duchmann ◽  
Fevzi F. Yalniz ◽  
Alessandro Sanna ◽  
David Sallman ◽  
Catherine C. Coombs ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1402-1402
Author(s):  
Hideki Makishima ◽  
Anna M Jankowska ◽  
Valeria Visconte ◽  
Ramon V. Tiu ◽  
Kathryn M Guinta ◽  
...  

Abstract Abstract 1402 Chronic myelomonocytic leukemia (CMML) is characterized by monocytic proliferation, cytomorphologic dysplasia and frequent progression to acute myelogeneous leukemia (AML). The molecular basis of CMML is poorly defined, although somatic mutations in a number of genes have recently been identified in a proportion of patients (epigenetic regulatory genes, spliceosomal genes, apoptosis genes, growth signal transducers and others). We performed a comprehensive analysis of molecular lesions, including somatic mutations detected by sequencing and chromosomal abnormalities investigated by metaphase and SNP-array karyotyping. We have selected a cohort of 72 patients (36 CMML1, 16 CMML2 and 20 sAML evolved from CMML). Our mutational screen performed in stages (as new mutations were discovered by our and other groups) and currently reveals mutations in UTX in 8%, DNMT3A in 9%, CBL in 14%, IDH1/2 in 4%, KRAS in 2.7%, NRAS in 4.1%, JAK2 in 1%, TET2 in 48%, ASXL1 in 43%, EZH2 in 5.5%, RUNX1 37%. Based on the discovery of various spliceosomal mutations in myeloid malignancies, novel mutations were also found in CMML, in U2AF1 in 12%, SF3B1 in 14%, SFRS19 in 6 % of cases tested. Chromosomal defects were detected in 60% of patients. In particular, a high frequency of somatic uniparental disomy (sUPD) were identified 71% of patients with abnormal cytogenetics, including UPD1p (N=3), UPD7q (N=8), UPD4q (N=6), UPD2p (N=2), UPD17q (N=2), UPD11q (N=5), UPDX (N=1), UPD21q (N=2). Some of the detected mutations were homozygous through their association with sUPD as for example for 3 EZH2, 1 UTX, 6 TET2, 2 DNMT3A, 5 CBL, 1 NRAS, 1 U2AF1 mutations. Furthermore, UPD17p implies that a P53 mutation is also present in this case as previously LOH17p was shown to be invariably associated with P53 mutations. Similarly, 2 cases of UPD17q imply that homozygous mutation of SRSF2, which is one of the Serine/arginine-rich splicing factor, may be present in this location and the mutation analysis is ongoing. In over 90% of >1 mutation was found but many patients harbored multiple mutations with frequent combinations of TET2/CBL or TET2/ASXL1 as well as RUNX1 and U2AF1 serving as examples. There was an accumulation of mutations from sAML, CMML2 and CMML1 suggesting stepwise accumulation of lesions. In serial studies, some of the mutations were present at the inception (e.g., TET2, ASXL1 and DNMT3A) in some cases originally heterozygous mutations were also while other can occur in the course of disease (e.g. CBL). RAS and DNMT3A mutations were associated with a higher blasts count. In sum, combined analysis of molecular lesions in CMML reveals that similar phenotype may be a result of diverse mutations associated with seemingly unrelated pathways and that clinical phenotype may be a result of a combination of mutations which accumulate as the disease progresses. Survival analyses will require large cohorts to account for various confounding factors including the presence of multiple chromosomal abnormalities and mutations in one patient, however currently EZH2, DNMT3 and CBL mutations appear to convey less favorable prognosis. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 89 (6) ◽  
pp. 604-609 ◽  
Author(s):  
Nathalie Cervera ◽  
Raphael Itzykson ◽  
Emilie Coppin ◽  
Thomas Prebet ◽  
Anne Murati ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 274-274 ◽  
Author(s):  
Susanne Schnittger ◽  
Manja Meggendorfer ◽  
Alexander Kohlmann ◽  
Vera Grossmann ◽  
Kenichi Yoshida ◽  
...  

Abstract Abstract 274 Introduction: Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic malignancy characterized by features of both a myeloproliferative neoplasm and a myelodysplastic syndrome. We previously investigated 81 CMML cases and detected a number of genes frequently mutated (TET2 44.4%, CBL 22.2%, NRAS 22.2%, KRAS 12.3%, JAK2 9.8%, RUNX1 8.7%, EZH2 12.3% (Kohlmann et al., JCO, 2010; Grossmann et al., Leukemia, 2011). Recently, we detected a new candidate gene, SRSF2 (serine/arginine-rich splicing factor 2, also known as SC35) that is a component of the RNA splicing machinery and found it to be frequently mutated in MDS. Aim: As CMML has been increasingly characterized by a growing number of genes during the last years we here analyzed both the frequency of SRSF2 mutations in this entity and the relevance in the context of other previously described gene mutations, as well as to look for a potential prognostic implication. Patients and Methods: In total, 163 cases with CMML (CMML-1 n=105, CMML-2 n=58) were included. The cohort comprised 115 males and 48 females with a median age of 72.8 yrs (range: 21.9 – 88.8 yrs) including all 81 pts that have been published previously. 112 cases (69%) had a normal karyotype and 51 (31%) showed aberrant karyotypes. The mutational hot spot region of SRSF2 around Proline codon 95 (P95) was analyzed by Sanger sequencing in all cases. Data on further mutations were available in respective subcohorts: ASXL1 (n=128), CBL (n=162), EZH2 (n=134), JAK2V617F (n=162), KRAS (n=140), NRAS (n=79), RUNX1 (n=156), TET2 (n=143), TP53 (n=80). Results:SRSF2 mutations of P95 were detected in 77/163 (47.2%) of all cases (49/105, 46.7% in CMML-1, and 28/58, 48.3% in CMML-2). In detail, 74 cases had a missense mutation leading to a change of P95 to P95H (n=33), P95L (n=24), P95R (n=16) or P95A (n=1). In further 3 cases a newly described 24 bp (8 amino acids) deletion starting at P95 was observed. All cases had a mutation load of approximately 50%. The mutations were correlated with higher age (73.3 yrs vs 68.7 yrs in the SRSF2wt cases, p=0.010) and higher hemoglobin levels (11.4 vs 10.5 g/dl in the SRSF2wt cases, p=0.019) whereas white blood cell counts were not different. Further, SRSF2 mutations were mutually exclusive of EZH2 mutations (0/12, 0% vs. 66/122, 54.1% in the EZH2wt, p<0.001) whereas a high coincidence occurred with RUNX1 mutations (22/35, 62.9% vs 52/121, 43% in the RUNX1wt, p=0.054) and TET2 mutations (50/82, 61% vs 18/61, 29.5% in the TET2wt, p<0.001). With respect to associations with all other gene mutations investigated and karyotype no specific pattern was observed. In the total cohort no impact of SRSF2 on survival was observed. Because of the high coincidence of SRSF2mut with RUNX1mut and TET2mut, we performed an analysis in these specific subcohorts. No impact of SRSF2mut in the TET2mut subcohort was found. Whereas in the RUNX1mut subcohort SRSF2mut had a favorable impact on overall survival compared to SRSF2wt (median OS: 108.0 months vs 41.8 months, p=0.05). Conclusions:SRSF2 has recently been described as a new marker in CMML and demonstrated to be useful to delineate further the genetic defects of this disease. This very frequent new mutation is characterized by higher age, higher hemoglobin levels and a high coincidence with TET2 and RUNX1 mutations. It is mutually exclusive of EZH2 mutations. In the subset of RUNX1 mutated CMML SRSF2 mutations demonstrated a favorable impact on outcome. Furthermore, for the first time a 24 bp deletion was observed in three cases that may provide further insight into the structural basis for the abnormal function of SRSF2. Disclosures: Schnittger: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Meggendorfer:MLL Munich Leukemia Laboratory: Employment. Kohlmann:MLL Munich Leukemia Laboratory: Employment. Grossmann:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


2011 ◽  
Vol 91 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Hyung-Doo Park ◽  
Soo Hyun Lee ◽  
Ki Woong Sung ◽  
Hong Hoe Koo ◽  
Nak Gyun Jung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document