homozygous mutation
Recently Published Documents


TOTAL DOCUMENTS

1040
(FIVE YEARS 405)

H-INDEX

52
(FIVE YEARS 6)

Author(s):  
Laura Libonati ◽  
Marco Ceccanti ◽  
Chiara Cambieri ◽  
Davide Colavito ◽  
Federica Moret ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Yu Hao ◽  
Zhikai Lei ◽  
Nanjing Shi ◽  
Lingying Yu ◽  
Weiqin Ji ◽  
...  

ObjectiveWe identified a novel inactivating mutation in the calcium-sensing receptor (CaSR) gene in a patient with refractory hypocalciuric hypercalcemia and analyzed its function. The effectiveness of radiofrequency ablation of the parathyroid glands to treat hypercalcemia caused by this mutation was explored.MethodsClinical data of patients before and after radiofrequency ablation were retrospectively analyzed. The CaSR mutation (D99N) found in the patient was studied in cell lines. HEK-293 cells were transfected with plasmids containing wild-type (WT) or mutant CaSR genes (D99N and W718X). Expression levels of the respective CaSR proteins were measured, and their functions were assessed by examining the effect of NPS R-568 (a CaSR agonist) on intracellular Ca2+ oscillations and that of exogenous parathyroid hormone (PTH) on intracellular cyclic adenosine monophosphate (cAMP) levels.ResultsThe effectiveness of pharmacological treatment was poor, whereas radiofrequency ablation of the parathyroid glands resulted in controlled blood calcium and PTH levels in the patient. In cell lines, upon NPS R-568 administration, the amplitude of intracellular Ca2+ oscillations in the D99N group was lower than that in the WT group and higher than that in the W718X group. Upon administration of PTH, intracellular cAMP levels in the D99N group were higher than those in the WT group and lower than those in the W718X group.ConclusionThe homozygous mutation D99N reduced CaSR activity and caused more severe hypocalciuric hypercalcemia. For patients with this type of hypercalcemia and poor response to pharmacological treatments, radiofrequency ablation of the parathyroid glands may be a suitable treatment option.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Raven Bough ◽  
Franck E. Dayan

AbstractA novel nucleotide mutation in ACC1 resulting in an alanine to valine amino acid substitution in acetyl-CoA carboxylase (ACCase) at position 2004 of the Alopecurus myosuroides reference sequence (A2004V) imparts quizalofop resistance in wheat. Genotypes endowed with the homozygous mutation in one or two ACC1 homoeologs are seven- and 68-fold more resistant to quizalofop than a wildtype winter wheat in greenhouse experiments, respectively. In vitro ACCase activities in soluble protein extracts from these varieties are 3.8- and 39.4-fold more resistant to quizalofop with the homozygous mutation in either one or two genomes, relative to the wildtype. The A2004V mutation does not alter the specific activity of wheat ACCase, suggesting that this resistance trait does not affect the catalytic functions of ACCase. Modeling of wildtype and quizalofop-resistant wheat ACCase demonstrates that the A2004V amino acid substitution causes a reduction in the volume of the binding pocket that hinders quizalofop’s interaction with ACCase. Docking studies confirm that the mutation reduces the binding affinity of quizalofop. Interestingly, the models suggest that the A2004V mutation does not affect haloxyfop binding. Follow up in vivo and in vitro experiments reveal that the mutation, in fact, imparts negative cross-resistance to haloxyfop, with quizalofop-resistant varieties exhibiting higher sensitivity to haloxyfop than the wildtype winter wheat line.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
R. Badilla-Porras ◽  
A. Echeverri-McCandless ◽  
J. M. Weimer ◽  
A. Ulate-Campos ◽  
A. Soto-Rodríguez ◽  
...  

Abstract Background Commonly known as Batten disease, the neuronal ceroid lipofuscinoses (NCLs) are a genetically heterogeneous group of rare pediatric lysosomal storage disorders characterized by the intracellular accumulation of autofluorescent material (known as lipofuscin), progressive neurodegeneration, and neurological symptoms. In 2002, a disease-causing NCL mutation in the CLN6 gene was identified (c.214G > T) in the Costa Rican population, but the frequency of this mutation among local Batten disease patients remains incompletely characterized, as do clinical and demographic attributes for this rare patient population. Objective To describe the main sociodemographic and clinical characteristics of patients with a clinical diagnosis for Batten Disease treated at the National Children's Hospital in Costa Rica and to characterize via molecular testing their causative mutations. Methods DNA extracted from buccal swabs was used for CLN6 gene sequencing. Participants’ sociodemographic and clinical characteristics were also obtained from their medical records. Results Nine patients with a clinical diagnosis of Batten disease were identified. Genetic sequencing determined the presence of the previously described Costa Rican homozygous mutation in 8 of 9 cases. One patient did not have mutations in the CLN6 gene. In all cases where the Costa Rican CLN6 mutation was present, it was accompanied by a substitution in intron 2. Patients were born in 4 of the 7 Costa Rican provinces, with an average onset of symptoms close to 4 years of age. No parental consanguinity was present in pedigrees. Initial clinical manifestations varied between patients but generally included: gait disturbances, language problems, visual impairment, seizures and psychomotor regression. Cortical and cerebellar atrophy was a constant finding when neuroimaging was performed. Seizure medication was a common element of treatment regimens. Conclusions This investigation supports that the previously characterized c.214G > T mutation is the most common causative NCL mutation in the Costa Rican population. This mutation is geographically widespread among Costa Rican NCL patients and yields a clinical presentation similar to that observed for CLN6 NCL patients in other geographies.


2022 ◽  
Vol 2022 ◽  
pp. 1-5
Author(s):  
Ulrich Jehn ◽  
Cornelie Müller-Hofstede ◽  
Barbara Heitplatz ◽  
Veerle Van Marck ◽  
Stefan Reuter ◽  
...  

Background. Alport syndrome results from a hereditary defect of collagen IV synthesis. This causes progressive glomerular disease, ocular abnormalities, and inner ear impairment. Case Presentation. Herein, we present a case of Alport syndrome in a 28-year-old woman caused by a novel mutation (Gly1436del) in the COL4A4 gene that was not unveiled until her first pregnancy. Within the 29th pregnancy week, our patient presented with massive proteinuria and nephrotic syndrome. Light microscopic examination of a kidney biopsy showed typical histological features of segmental sclerosis, and electron microscopy revealed extensive podocyte alterations as well as thickness of glomerular basement membranes with splitting of the lamina densa. One and a half years after childbirth, renal function deteriorated to a preterminal stage, whereas nephrotic syndrome subsided quickly after delivery. Conclusion. This case report highlights the awareness of atypical AS courses and emphasizes the importance of genetic testing in such cases.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Mingrong Lv ◽  
Chunyu Liu ◽  
Chunjie Ma ◽  
Hui Yu ◽  
Zhongmei Shao ◽  
...  

Abstract Background Potassium channels are important for the structure and function of the spermatozoa. As a potassium transporter, the mSlo3 is essential for male fertility as Slo3 knockout male mice were infertile with the series of functional defects in sperm cells. However, no pathogenic variant has been detected in human SLO3 to date. Here we reported a human case with homozygous SLO3 mutation. The function of SLO3 in human sperm and the corresponding assisted reproductive strategy are also investigated. Methods We performed whole-exome sequencing analysis from a large cohort of 105 patients with asthenoteratozoospermia. The effects of the variant were investigated by quantitative RT-PCR, western blotting, and immunofluorescence assays using the patient spermatozoa. Sperm morphological and ultrastructural studies were conducted using haematoxylin and eosin staining, scanning and transmission electron microscopy. Results We identified a homozygous missense variant (c.1237A > T: p.Ile413Phe) in the sperm-specific SLO3 in one Chinese patient with male infertility. This SLO3 variant was rare in human control populations and predicted to be deleterious by multiple bioinformatic tools. Sperm from the individual harbouring the homozygous SLO3 variant exhibited severe morphological abnormalities, such as acrosome hypoplasia, disruption of the mitochondrial sheath, coiled tails, and motility defects. The levels of SLO3 mRNA and protein in spermatozoa from the affected individual were reduced. Furthermore, the acrosome reaction, mitochondrial membrane potential, and membrane potential during capacitation were also afflicted. The levels of acrosome marker glycoproteins and PLCζ1 as well as the mitochondrial sheath protein HSP60 and SLO3 auxiliary subunit LRRC52, were significantly reduced in the spermatozoa from the affected individual. The affected man was sterile due to acrosome and mitochondrial dysfunction; however, intra-cytoplasmic sperm injection successfully rescued this infertile condition. Conclusions SLO3 deficiency seriously impact acrosome formation, mitochondrial sheath assembly, and the function of K+ channels. Our findings provided clinical implications for the genetic and reproductive counselling of affected families.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jing Yang ◽  
Yongli Xu ◽  
Linxia Deng ◽  
Luowen Zhou ◽  
Liru Qiu ◽  
...  

Abstract Background Imerslund-Gräsbeck Syndrome (IGS) is mainly caused by CUBN gene biallelic mutations. Proteinuria accompanies IGS specific symptoms in about half of the patients, isolated proteinuria is rarely reported. Here we present 3 patients with isolated proteinuria and focal segmental glomerulosclerosis (FSGS) caused by CUBN gene biallelic pathogenic variants. Method Whole exome sequencing was performed on three children with isolated proteinuria. CUBN gene biallelic pathogenic variants were found and then verified by sanger sequencing. Their clinical, pathological and molecular genetic characteristics were analyzed and correlated accordingly. Results All three children presented with isolated proteinuria, no megaloblastic anemia. Their urine levels of β2 microglobulin were normal or slightly higher. Renal biopsies showed focal segmental glomerulosclerosis with mild glomerular mesangial hypercellularity, partial effacement of foot processes and podocyte microvillation. Two of them were found to carry compound heterozygous mutations and one homozygous mutation of CUBN gene. Totally four CUBN gene biallelic pathogenic variants were identified, including c.9287 T > C (p.L3096P), c.122 + 1G > A, c.7906C > T (p.R2636*), c.10233G > A (p.W3411*). Except for intron splice-site mutation, all other variants are located in highly conserved sites of CUB domain for binding to albumin. Conclusion The results demonstrate that CUBN gene mutations may cause isolated proteinuria pathologically presented as FSGS. Our cases extend the spectrum of renal manifestation and genotype of CUBN gene mutations.


2022 ◽  
Vol 15 (1) ◽  
pp. e246431
Author(s):  
Kiran Vemireddy ◽  
Nalinikanta Panigrahy ◽  
Lokesh Lingappa ◽  
Dinesh Chirla

Methylenetetrahydrofolate reductase (MTHFR) deficiency is a rare autosomal recessive inherited inborn error of metabolism, which presents with various severity depending on the level of residual enzyme activity. In neonates, it can present with recurrent hypoventilation episodes, persistent encephalopathy with or without microcephaly. MTHFR deficiency also results in hyperhomocysteinemia, homocystinuria and hypomethionemia. We report a male neonate with severe MTHFR deficiency presenting to us on third week of life with progressive encephalopathy, microcephaly, seizures, central hypoventilation. There was similar history in the previous sibling. The patient’s blood lactate, ammonia, tandem mass spectrometry for amino acids and acyl carnitine were normal. He remained encephalopathic with progressive increase in need of respiratory support in spite of supportive treatment and metabolic cocktail consisting of riboflavin, pyridoxine, coenzyme Q and carnitine. This neonate had novel homozygous mutation, which results in MTHFR deficiency. In newborn with hypoventilation or recurrent apnoea with encephalopathy and microcephaly, MTHFR deficiency should be considered as a differential diagnosis. Mutation study helps in confirming diagnosis; however, extended newborn metabolic screening with homocysteine level could help in early diagnosis of these cases.


2021 ◽  
Vol 13 (2) ◽  
pp. 64-70
Author(s):  
Jung Hoon Han ◽  
Han Jun Kim ◽  
Kyungmi Oh ◽  
Chi Kyung Kim

Background: Neuroimaging detects cerebral small vessel disease (CSVD) subtypes, including infarction, asymptomatic lacunes, cerebral microbleeds, white matter hyperintensities (WMHs), and enlarged perivascular space. Methylenetetrahydrofolate reductase (MTHFR) plays an essential role in the metabolism of folic acid and homocysteine. The purpose of this study was to investigate the relationship between the MTHFR C677T mutation and CSVD subtypes.Methods: A total of 144 patients with acute ischemic stroke who visited the Korea University Guro Hospital between April 2020 and August 2020 were retrospectively reviewed. After excluding 24 patients, due to missing laboratory, clinical, or imaging information, a total of 120 patients were analyzed.Results: Among the 120 participants, 25% were included in the MTHFR C677T homozygous mutation group, which had significantly lower folic acid levels (6.24±4.21 ng/mL vs. 8.24±4.21 ng/mL, p=0.03) and higher total homocysteine levels (17.09±14.07 μmol/L vs. 9.65±3.19 μmol/L, p<0.01). Using multiple logistic regression analysis, the homozygous mutation (adjusted odds ratio [aOR]=4.29; 95% confidence interval [CI]=1.16–15.90) and age (aOR=1.06; 95% CI=1.01–1.11) were independently associated with moderate to severe WMHs. Additionally, moderate to severe WMHs were more frequent in the homozygous mutation group (86.7% vs. 66.7%, p=0.01). In a detailed analysis, the homozygous mutation group showed a significantly higher rate of moderate to severe periventricular WMH (PWMH) (86.7% vs. 65.6%, p<0.01).Conclusion: The MTHFR C677T homozygous mutation was positively correlated with moderate to severe PWMH subtypes of CSVD.


2021 ◽  
pp. 97-100
Author(s):  
Hülya Nalçacıoğlu ◽  
Demet Tekcan ◽  
Hülya Gözde Önal ◽  
Özlem Aydoğ

Congenital nephrotic syndrome (CNS) is characterized by severe proteinuria, hypoalbuminemia, and edema within the first three months of life. Congenital nephrotic syndrome can occur due to perinatal infections or mutation of genes encoding structural or regulatory proteins of the glomerular filtration barrier. Treatment includes albumin infusions, nephrectomy, dialysis, and transplantation. In this study, we aimed to evaluate the demographic, clinical, and follow-up results of patients with CNS followed up in our center between 2010 and 2020. Demographic, clinical, laboratory values of 8 patients diagnosed with CNS between 2010 and 2020, kidney biopsy results, genetic examinations, and follow-up results were retrospectively evaluated. A total of 8 patients (4 girls) were included in this study. The median age at diagnosis was 36 days (3 days-8 months) and the follow-up period was 34 months (7-114 months). There was a history of prematurity and consanguinity in 5 patients. Edema was detected at the admission of all patients. Albumin infusion and captopril therapy were started from the diagnosis. No pathology was seen in the tests for perinatal infection, and ultrasonographic examinations were normal. In the genetic analysis, NPHS1 (Nephrin) homozygous mutation was detected in six patients, and coenzyme Q2 mutation was detected in one patient. Peritoneal dialysis treatment was performed in four patients during the follow-up, and unilateral nephrectomy was completed in one patient. During the follow-up, four of eight patients (three due to sepsis while on dialysis, one on the postoperative after the first day of transplantation) died. Three patients are followed up with kidney transplantation and one with supportive treatment. According to our results, most CNS cases are genetic, and nephrin mutation is the most common cause. Management of complications in CNS is crucial for patient surviva


Sign in / Sign up

Export Citation Format

Share Document