Method of pipeline construction in swamplands with use of refrigeration circuit

Author(s):  
S.I. Sentsov ◽  
◽  
V.A. Ivanov ◽  
I.G. Silina ◽  
E.A. Gilmiyarov ◽  
...  
2015 ◽  
pp. 91-96
Author(s):  
I. E. Kiryanov ◽  
Yu. D. Zemenkov ◽  
S. M. Dorofeev ◽  
V. S. Toropov

On the basis of analyzing the characteristics of used materials and the parameters of trenchless transitions profiles was developed emergency response, including several schemes of release a pipe jammed in the hole during the pipeline pulling in the pipeline construction by horizontal directional drilling. Proposed schemes applicability analyzed for trenchless construction real conditions.


2017 ◽  
Vol 34 (9) ◽  
pp. 1603-1605
Author(s):  
Anbo Zhou ◽  
Yeting Zhang ◽  
Yazhou Sun ◽  
Jinchuan Xing

Author(s):  
Rodney S. Read

Geohazards are threats of a geological, geotechnical, hydrological, or seismic/tectonic nature that may negatively affect people, infrastructure and/or the environment. In a pipeline integrity management context, geohazards are considered under the time-independent threat category of Weather-related and Outside Force in the American standard ASME B31.8S. Geotechnical failure of pipelines due to ground movement is addressed in Annex H and elsewhere in the Canadian standard CSA-Z662. Both of these standards allow flexibility in terms of geohazard assessment as part of pipeline integrity management. As a result of this flexibility, many systems for identifying, characterizing, analyzing and managing geohazards have been developed by operators and geotechnical engineering practitioners. The evolution of these systems, and general expectations regarding geohazard assessment, toward quantitative geohazard frequency assessment is a trend in recent pipeline hearings and regulatory filings in Canada. While this trend is intended to frame geohazard assessment in an objective and repeatable manner, partitioning the assessment into a series of conditional probability estimates, the reality is that there is always an element of subjectivity in assigning these conditional probabilities, requiring subject matter expertise and expert judgment to make informed and defensible decisions. Defining a specific risk context (typically loss of containment from a pipeline) and communicating uncertainty are important aspects of applying these types of systems. Adoption of these approaches for alternate risk contexts, such as worker safety during pipeline construction, is challenging in that the specific geohazards and threat scenarios considered for long-term pipeline integrity may or may not adequately represent all credible threats during pipeline construction. This paper explores the commonalities and differences in short- and long-term framing of geohazard assessment, and offers guidance for extending geohazard assessment for long-term pipeline integrity to other contexts such as construction safety.


ICPTT 2012 ◽  
2012 ◽  
Author(s):  
Shuhuai Mu ◽  
Jianfeng Gao ◽  
Jinhong Huo ◽  
ChengLei Wang ◽  
Conggang Jiang

1998 ◽  
Vol 9 (1-2) ◽  
pp. 71-80
Author(s):  
V.M. Pavlyuchenko ◽  
B.L. Krivoshein Minneftegazstroy

Author(s):  
David Horsley ◽  
Jing Ma ◽  
Jan van der Ent ◽  
Casper Wassink ◽  
Martin Fingerhut

An integrated approach for the development of welding, inspection, and alternative weld flaw acceptance criteria, as used for girth welds during pipeline construction is presented. Welding is typically the pace limiting step during pipeline construction and is critical element of pipeline integrity. As such it is vital that it be completed efficiently and with high quality. Each of these three elements is vitally important to welding productivity and quality. At the core of the approach is the coordination of the three elements such that they are developed in concert. By this coordinated effort, all design options are considered leading to optimization of the final outcome. The approach is described by providing an example alternative weld flaw acceptance criteria, and giving the logic pertaining to choices of welding setup, AUT setup, the standard used for design and construction, and the impact of choices within these three elements on the final outcome. The paper illustrates the importance of a unified approach on weld productivity and quality.


Sign in / Sign up

Export Citation Format

Share Document