scholarly journals Joule heating effect on magnetohydrodynamic natural convection flow along a vertical wavy surface

2012 ◽  
Vol 9 (1) ◽  
pp. 11-24 ◽  
Author(s):  
Nazma Parveen ◽  
M A Alim

In this paper, the effect of Joule heating on magnetohydrodynamic natural convection flow of viscous incompressible fluid along a uniformly heated vertical wavy surface has been investigated. The governing boundary layer equations with associated boundary conditions for this phenomenon are converted to nondimensional form using a suitable transformation. The equations are mapped into the domain of a vertical flat plate and then solved numerically employing the implicit finite difference method, known as the Keller-box scheme. Effects of pertinent parameters, such as the Joule heating parameter (J), Prandtl number (Pr), magnetic parameter (M) and the amplitude of the wavy surface ? on the surface shear stress in terms of the skin friction coefficient (Cfx), the rate of heat transfer in terms of local Nusselt number (Nux), the streamlines and the isotherms are discussed. A comparison with previously published work is performed and the results show excellent agreement. DOI: http://dx.doi.org/10.3329/jname.v9i1.5954 Journal of Naval Architecture and Marine Engineering 9(2012) 11-24

2007 ◽  
Vol 12 (4) ◽  
pp. 447-459 ◽  
Author(s):  
Md. M. Alam ◽  
M. A. Alim ◽  
Md. M. K. Chowdhury

In this paper, the viscous dissipation effects on magnetohydrodynamic natural convection flow over a sphere in the presence of heat generation have been described. The governing boundary layer equations are first transformed into a nondimensional form and the resulting nonlinear system of partial differential equations are then solved numerically using finite-difference method together with Keller-box scheme. The numerical results of the surface shear stress in terms of skin friction coefficient and the rate of heat transfer in terms of local Nusselt number, velocity as well as temperature profiles are shown graphically and tabular form for a selection of parameters set consisting of heat generation parameter Q, magnetic parameter M, viscous dissipation parameter N and the Prandlt number Pr.


2015 ◽  
Vol 45 (1) ◽  
pp. 24-31
Author(s):  
K. H. Kabir ◽  
M. A. Alim ◽  
L. S. Andallah ◽  
Saika Mahjabin

In this paper, the effects of viscous dissipation on natural convection flow along a uniformly heated vertical wavy surface with heat generation have been investigated. The governing boundary layer equations are first transformed into a non-dimensional form using suitable set of dimensionless variables. The resulting nonlinear systems of partial differential equations are mapped into the domain of a vertical flat plate and then solved numerically employing the Keller-box method. The numerical results of the surface shear stress in terms of skin friction coefficient and the rate of heat transfer in terms of local Nusselt number, the velocity as well as the temperature profiles are shown graphically and in tabular form for different values of physical parameters namely, viscous dissipation parameter Vd, heat generation parameter Q and Prandtl number Pr. 


Author(s):  
Amena Ferdousi ◽  
MA Alim

Natural convection flow from a porous vertical plate in presence of heat generation have been presented here. The governing boundary layer equations are first transformed into a non dimensional form and the resulting non linear system of partial differential equations are then solved numerically using finite difference method together with Keller-Box scheme. The numerical results of the surface shear stress in terms of skin friction coefficient and the rate of heat transfer in terms of local Nusselt number, velocity as well as temperature profiles are shown graphically and tabular form for a selection of parameters set of consisting of heat generation parameter Q, Prandtl number Pr. Keywords: Porous plate, Heat generation, Natural convection. DOI: 10.3329/diujst.v5i1.4385 Daffodil International University Journal of Science and Technology Vol.5(1) 2010 pp.73-80


2005 ◽  
Vol 10 (4) ◽  
pp. 349-363 ◽  
Author(s):  
Md. M. Molla ◽  
M. A. Taher ◽  
Md. M. K. Chowdhury ◽  
Md. A. Hossain

The present work describes the effect of magnetohydrodynamic natural convection flow on a sphere in presence of heat generation. The governing boundary layer equations are first transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations arethen solved numerically using the Keller-box method. Here we have focused our attention on the evolution of the surface shear stress in terms of local skin friction and the rate of heat transfer in terms of local Nusselt number, velocity distribution as well as temperature distribution for a selection of parameter sets consisting of heat generation parameter Q (= 0.0, 0.5, 1.0, 2.0) and the magnetic parameter M (= 0.0, 0.2, 0.5, 0.8, 1.0). Numerical solutions have been considered for Prandtl number Pr (= 0.7, 1.0, 2.0).


2011 ◽  
Vol 66 (6-7) ◽  
pp. 427-440 ◽  
Author(s):  
Nasser S. Elgazery ◽  
Nader Y. Abd Elazem

A mathematical model will be analyzed in order to study the effects of viscous dissipation and Ohmic heating (Joule heating) on magnetohydrodynamic (MHD) natural convection flow of a temperature dependent viscosity from heated vertical wavy surface. The present physical problem is studied numerically by using the appropriate variables, which reduce the complex wavy surface into a flat one. An implicit marching Chebyshev collocation scheme is employed for the analysis. Numerical solutions are obtained for velocity, temperature, local skin friction, and Nusselt number for a selection of parameter sets consisting of Eckert number, Prandtl number, MHD variation, and amplitude-wavelength ratio parameter. Numerical results show that these parameters have significant influences on the velocity and the temperature profiles as well as for the local skin friction and Nusselt number


2015 ◽  
Vol 8 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Kazi Humayun Kabir ◽  
Md. Abdul Alim ◽  
Laek Sazzad Andallah ◽  
◽  
◽  
...  

2014 ◽  
Vol 44 (1) ◽  
pp. 43-50 ◽  
Author(s):  
N. Parveen ◽  
M. A. Alim

Temperature dependent thermal conductivity on magnetohydrodynamic (MHD) free convective flow of viscous incompressible fluid with Joule heating along a uniformly heated vertical wavy surface has been investigated numerically. The governing nonlinear boundary layer equations are mapped into a domain of a vertical flat plate and solved by an implicit finite difference method known as Keller-box scheme. The skin friction coefficient, the rate of heat transfer in terms of local Nusselt number, the stream lines and the isotherms are reported for different parameter combinations. DOI: http://dx.doi.org/10.3329/jme.v44i1.19497


Sign in / Sign up

Export Citation Format

Share Document