scholarly journals In Silico study for investigating and predicting the activities of 7-Hydroxy-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]pyridine-4-carboxylate Derivatives as Potent Anti-HIV Agents

2020 ◽  
Vol 4 (2) ◽  
pp. 49-58
Author(s):  
Ahanonu SAVİOUR ◽  
Gideon Adamu SHALLANGWA ◽  
Adamu UZAİRU
Gene Reports ◽  
2019 ◽  
Vol 14 ◽  
pp. 87-93 ◽  
Author(s):  
Madhu Yadav ◽  
Ritika Srivastava ◽  
Farha Naaz ◽  
Anuradha Singh ◽  
Rajesh Verma ◽  
...  

2013 ◽  
Vol 37 (8) ◽  
pp. 1001-1015 ◽  
Author(s):  
Anand Balupuri ◽  
Changdev G. Gadhe ◽  
Pavithra K. Balasubramanian ◽  
Gugan Kothandan ◽  
Seung Joo Cho

2020 ◽  
Author(s):  
Romulo O. Barros ◽  
Fabio L. C. C. Junior ◽  
Wildrimak S. Pereira ◽  
Neiva M. N. Oliveira ◽  
Ricardo Ramos

The world is currently facing the COVID-19 pandemic caused by the SARS-CoV-2 virus. The pandemic is causing the death of people around the world and public and social health measures to slow or prevent the spread of COVID-19 are being implemented with the involvement of all members of society. Research institutions are accelerating the discovery of vaccines and therapies for the COVID-19. In this work, molecular docking was used to study (in silico) the interaction of twenty-four ligands, divided into four groups, with four important SARS-CoV-2 receptors. The results showed that Metaquine (group 01), antimalarial substance and the anti-HIV antiretroviral Saquinavir (group 03), presented interaction with all the studied receptors, indicating that they are potentials candidates for muti-target drugs for COVID-19.


ChemMedChem ◽  
2009 ◽  
Vol 4 (7) ◽  
pp. 1153-1163 ◽  
Author(s):  
Antonio Carrieri ◽  
Violeta I. Pérez-Nueno ◽  
Alessandra Fano ◽  
Carlo Pistone ◽  
David W. Ritchie ◽  
...  

2020 ◽  
Author(s):  
Romulo O. Barros ◽  
Fabio L. C. C. Junior ◽  
Wildrimak S. Pereira ◽  
Neiva M. N. Oliveira ◽  
Ricardo Ramos

The world is currently facing the COVID-19 pandemic caused by the SARS-CoV-2 virus. The pandemic is causing the death of people around the world and public and social health measures to slow or prevent the spread of COVID-19 are being implemented with the involvement of all members of society. Research institutions are accelerating the discovery of vaccines and therapies for the COVID-19. In this work, molecular docking was used to study (in silico) the interaction of twenty-four ligands, divided into four groups, with four important SARS-CoV-2 receptors. The results showed that Metaquine (group 01), antimalarial substance and the anti-HIV antiretroviral Saquinavir (group 03), presented interaction with all the studied receptors, indicating them as potentials candidates for muti-target drugs for COVID-19.


2020 ◽  
Author(s):  
Romulo O. Barros ◽  
Fabio L. C. C. Junior ◽  
Wildrimak S. Pereira ◽  
Neiva M. N. Oliveira ◽  
Ricardo Ramos

The world is currently facing the COVID-19 pandemic caused by the SARS-CoV-2 virus. The pandemic is causing the death of people around the world and public and social health measures to slow or prevent the spread of COVID-19 are being implemented with the involvement of all members of society. Research institutions are accelerating the discovery of vaccines and therapies for the COVID-19. In this work, molecular docking was used to study (in silico) the interaction of twenty-four ligands, divided into four groups, with four important SARS-CoV-2 receptors. The results showed that Metaquine (group 01), antimalarial substance and the anti-HIV antiretroviral Saquinavir (group 03), presented interaction with all the studied receptors, indicating them as potentials candidates for muti-target drugs for COVID-19.


2020 ◽  
Author(s):  
Romulo O. Barros ◽  
Fabio L. C. C. Junior ◽  
Wildrimak S. Pereira ◽  
Neiva M. N. Oliveira ◽  
Ricardo Ramos

The world is currently facing the COVID-19 pandemic caused by the SARS-CoV-2 virus. The pandemic is causing the death of people around the world and public and social health measures to slow or prevent the spread of COVID-19 are being implemented with the involvement of all members of society. Research institutions are accelerating the discovery of vaccines and therapies for the COVID-19. In this work, molecular docking was used to study (in silico) the interaction of twenty-four ligands, divided into four groups, with four important SARS-CoV-2 receptors. The results showed that Metaquine (group 01), antimalarial substance and the anti-HIV antiretroviral Saquinavir (group 03), presented interaction with all the studied receptors, indicating that they are potentials candidates for muti-target drugs for COVID-19.


2020 ◽  
Author(s):  
Romulo O. Barros ◽  
Fabio L. C. C. Junior ◽  
Wildrimak S. Pereira ◽  
Neiva M. N. Oliveira ◽  
Ricardo Ramos

The world is currently facing the COVID-19 pandemic caused by the SARS-CoV-2 virus. The pandemic is causing the death of people around the world and public and social health measures to slow or prevent the spread of COVID-19 are being implemented with the involvement of all members of society. Research institutions are accelerating the discovery of vaccines and therapies for the COVID-19. In this work, molecular docking was used to study (in silico) the interaction of twenty-four ligands, divided into four groups, with four important SARS-CoV-2 receptors. The results showed that Metaquine (group 01), antimalarial substance and the anti-HIV antiretroviral Saquinavir (group 03), presented interaction with all the studied receptors, indicating them as potentials candidates for muti-target drugs for COVID-19.


2020 ◽  
Vol 17 (6) ◽  
pp. 409-429
Author(s):  
Arun Kumar Mishra ◽  
Arvind Kumar ◽  
Jagdish K. Sahu

Oxadiazole moiety, which is one of the heterocyclic aromatic groups of the azole family; with the molecular formula C2H2N2O, exists in four isomeric form; out of which, 1,2,4-oxadiazole; 1,2,5-oxadiazole and 1,3,4-oxadiazole are common isomers. The stable isomeric forms of oxadiazoles are observed in a variety of pharmaceutical important potent drugs including raltegravir, butalamine, fasiplon, oxolamine and pleconaril. An attempt has been made to emphasize the chemistry and pharmacology associated with oxadiazole and its derivatives. A number of oxadiazole derivatives are very popular and common in use as potential therapeutic agents. However, a number of researchers are working and have worked to find out more synthetic analogues for anticancer and antifungal, anti-HIV agents using biological and in-silico models.


Sign in / Sign up

Export Citation Format

Share Document