in silico studies
Recently Published Documents





2022 ◽  
Vol 1250 ◽  
pp. 131671
Lalhruaizela ◽  
Devanshi Patel ◽  
Brilliant N. Marak ◽  
Jayanta Dowarah ◽  
Balkaran Singh Sran ◽  

2022 ◽  
Gayathri Sambamoorthy ◽  
Karthik Raman

Microbes thrive in communities, embedded in a complex web of interactions. These interactions, particularly metabolic interactions, play a crucial role in maintaining the community structure and function. As the organisms thrive and evolve, a variety of evolutionary processes alter the interactions among the organisms in the community, although the community function remains intact. In this work, we simulate the evolution of two-member microbial communities in silico to study how evolutionary forces can shape the interactions between organisms. We employ genomescale metabolic models of organisms from the human gut, which exhibit a range of interaction patterns, from mutualism to parasitism. We observe that the evolution of microbial interactions varies depending upon the starting interaction and also on the metabolic capabilities of the organisms in the community. We find that evolutionary constraints play a significant role in shaping the dependencies of organisms in the community. Evolution of microbial communities yields fitness benefits in only a small fraction of the communities, and is also dependent on the interaction type of the wild-type communities. The metabolites cross-fed in the wild-type communities appear in only less than 50% of the evolved communities. A wide range of new metabolites are cross-fed as the communities evolve. Further, the dynamics of microbial interactions are not specific to the interaction of the wild-type community but vary depending on the organisms present in the community. Our approach of evolving microbial communities in silico provides an exciting glimpse of the dynamics of microbial interactions and offers several avenues for future investigations.

2022 ◽  
Vol 12 ◽  
Faez Iqbal Khan ◽  
Fakhrul Hassan ◽  
Dakun Lai

Various metabolites identified with therapeutic mushrooms have been found from different sources and are known to have antibacterial, antiviral, and anticancer properties. Over thousands soil growth-based mushroom metabolites have been discovered, and utilized worldwide to combat malignancy. In this study, psilocybin-mushroom that contains the psychedelic compounds such as psilacetin, psilocin, and psilocybine were screened and found to be inhibitors of SARS-CoV-2 Mprotease. It has been found that psilacetin, psilocin, and psilocybine bind to Mprotease with −6.0, −5.4, and −5.8 kcal/mol, respectively. Additionally, the psilacetin was found to inhibit human interleukin-6 receptors to reduce cytokine storm. The binding of psilacetin to Mprotease of SARS-CoV-2 and human interleukin-6 receptors changes the structural dynamics and Gibbs free energy patterns of proteins. These results suggested that psilocybin-mushroom could be utilized as viable potential chemotherapeutic agents for SARS-CoV-2.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 492
Anamul Hasan ◽  
Partha Biswas ◽  
Tohmina Afroze Bondhon ◽  
Khoshnur Jannat ◽  
Tridib K. Paul ◽  

The focus of this roadmap is to evaluate the possible efficacy of Artemisia herba-alba Asso. (Asteraceae) for the treatment of COVID-19 and some of its symptoms and several comorbidities using a combination of in silico (molecular docking) studies, reported ethnic uses, and pharmacological activity studies of this plant. In this exploratory study, we show that various phytochemicals from Artemisia herba-alba can be useful against COVID-19 (in silico studies) and for its associated comorbidities. COVID-19 is a new disease, so reports of any therapeutic treatments against it (traditional or conventional) are scanty. On the other hand, we demonstrate, using Artemisia herba-alba as an example, that through a proper search and identification of medicinal plant(s) and their phytochemicals identification using secondary data (published reports) on the plant’s ethnic uses, phytochemical constituents, and pharmacological activities against COVID-19 comorbidities and symptoms coupled with the use of primary data obtained from in silico (molecular docking and molecular dynamics) studies on the binding of the selected plant’s phytochemicals (such as: rutin, 4,5-di-O-caffeoylquinic acid, and schaftoside) with various vital components of SARS-CoV-2, it may be possible to rapidly identify plants that are suitable for further research regarding therapeutic use against COVID-19 and its associated symptoms and comorbidities.

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 321
Alok K. Paul ◽  
Md K. Hossain ◽  
Tooba Mahboob ◽  
Veeranoot Nissapatorn ◽  
Polrat Wilairatana ◽  

Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease 2019 (COVID-19) with other comorbidities such as diabetes. Diabetes is the most common cause of diabetic nephropathy, which is attributed to hyperglycemia. COVID-19 produces severe complications in people with diabetes mellitus. This article explains how SARS-CoV-2 causes more significant kidney damage in diabetic patients. Importantly, COVID-19 and diabetes share inflammatory pathways of disease progression. SARS-CoV-2 binding with ACE-2 causes depletion of ACE-2 (angiotensin-converting enzyme 2) from blood vessels, and subsequently, angiotensin-II interacts with angiotensin receptor-1 from vascular membranes that produce NADPH (nicotinamide adenine dinucleotide hydrogen phosphate) oxidase, oxidative stress, and constriction of blood vessels. Since diabetes and COVID-19 can create oxidative stress, we hypothesize that COVID-19 with comorbidities such as diabetes can synergistically increase oxidative stress leading to end-stage renal failure and death. Antioxidants may therefore prevent renal damage-induced death by inhibiting oxidative damage and thus can help protect people from COVID-19 related comorbidities. A few clinical trials indicated how effective the antioxidant therapy is against improving COVID-19 symptoms, based on a limited number of patients who experienced COVID-19. In this review, we tried to understand how effective antioxidants (such as vitamin D and flavonoids) can act as food supplements or therapeutics against COVID-19 with diabetes as comorbidity based on recently available clinical, preclinical, or in silico studies.

Cigdem Dokuzparmak ◽  
Fulya Oz Tuncay ◽  
Serap Basoglu Ozdemir ◽  
Busra Kurnaz ◽  
Ilke Demir ◽  

2022 ◽  
Vol 23 (2) ◽  
pp. 755
Anna Stasiłowicz-Krzemień ◽  
Michał Gołębiewski ◽  
Anita Płazińska ◽  
Wojciech Płaziński ◽  
Andrzej Miklaszewski ◽  

Background: Naringenin (NAR) is a flavonoid with excellent antioxidant and neuroprotective potential that is limited by its low solubility. Thus, solid dispersions with β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD), hydroxypropylmethylcellulose (HPMC), and microenvironmental pH modifiers were prepared. Methods: The systems formation analysis was performed by X-Ray Powder Diffraction (XRPD) and Fourier-transform infrared spectroscopy (FT-IR). Water solubility and dissolution rates were studied with a pH of 1.2 and 6.8. In vitro permeability through the gastrointestinal tract (GIT) and the blood-brain barrier (BBB) was assessed with the parallel artificial membrane permeability assay (PAMPA) assay. The antioxidant activity was studied with the 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and cupric ion reducing antioxidant capacity (CUPRAC) assays, while in vitro enzymes studies involved the inhibition of acetylcholinesterase, butyrylcholinesterase, and tyrosinase. For the most promising system, in silico studies were conducted. Results: NAR solubility was increased 458-fold by the solid dispersion NAR:HP-β-CD:NaHCO3 in a mass ratio of 1:3:1. The dissolution rate was elevated from 8.216% to 88.712% in a pH of 1.2 and from 11.644% to 88.843% in a pH of 6.8 (within 3 h). NAR GIT permeability, described as the apparent permeability coefficient, was increased from 2.789 × 10−6 cm s−1 to 2.909 × 10−5 cm s−1 in an acidic pH and from 1.197 × 10−6 cm s−1 to 2.145 × 10−5 cm s−1 in a basic pH. NAR BBB permeability was established as 4.275 × 10−6 cm s−1. The antioxidant activity and enzyme inhibition were also increased. Computational studies confirmed NAR:HP-β-CD inclusion complex formation. Conclusions: A significant improvement in NAR solubility was associated with an increase in its biological activity.

Sign in / Sign up

Export Citation Format

Share Document