scholarly journals High Acceleration Three-Dimensional T1-Weighted Dual Echo Dixon Hepatobiliary Phase Imaging Using Compressed Sensing-Sensitivity Encoding: Comparison of Image Quality and Solid Lesion Detectability with the Standard T1-Weighted Sequence

2019 ◽  
Vol 20 (3) ◽  
pp. 438 ◽  
Author(s):  
Ju Gang Nam ◽  
Jeong Min Lee ◽  
Sang Min Lee ◽  
Hyo-Jin Kang ◽  
Eun Sun Lee ◽  
...  
2018 ◽  
Vol 40 (1) ◽  
pp. 92-98 ◽  
Author(s):  
J.E. Vranic ◽  
N.M. Cross ◽  
Y. Wang ◽  
D.S. Hippe ◽  
E. de Weerdt ◽  
...  

Author(s):  
Martin Georg Zeilinger ◽  
Marco Wiesmüller ◽  
Christoph Forman ◽  
Michaela Schmidt ◽  
Camila Munoz ◽  
...  

Abstract Objectives To evaluate an image-navigated isotropic high-resolution 3D late gadolinium enhancement (LGE) prototype sequence with compressed sensing and Dixon water-fat separation in a clinical routine setting. Material and methods Forty consecutive patients scheduled for cardiac MRI were enrolled prospectively and examined with 1.5 T MRI. Overall subjective image quality, LGE pattern and extent, diagnostic confidence for detection of LGE, and scan time were evaluated and compared to standard 2D LGE imaging. Robustness of Dixon fat suppression was evaluated for 3D Dixon LGE imaging. For statistical analysis, the non-parametric Wilcoxon rank sum test was performed. Results LGE was rated as ischemic in 9 patients and non-ischemic in 11 patients while it was absent in 20 patients. Image quality and diagnostic confidence were comparable between both techniques (p = 0.67 and p = 0.66, respectively). LGE extent with respect to segmental or transmural myocardial enhancement was identical between 2D and 3D (water-only and in-phase). LGE size was comparable (3D 8.4 ± 7.2 g, 2D 8.7 ± 7.3 g, p = 0.19). Good or excellent fat suppression was achieved in 93% of the 3D LGE datasets. In 6 patients with pericarditis, the 3D sequence with Dixon fat suppression allowed for a better detection of pericardial LGE. Scan duration was significantly longer for 3D imaging (2D median 9:32 min vs. 3D median 10:46 min, p = 0.001). Conclusion The 3D LGE sequence provides comparable LGE detection compared to 2D imaging and seems to be superior in evaluating the extent of pericardial involvement in patients suspected with pericarditis due to the robust Dixon fat suppression. Key Points • Three-dimensional LGE imaging provides high-resolution detection of myocardial scarring. • Robust Dixon water-fat separation aids in the assessment of pericardial disease. • The 2D image navigator technique enables 100% respiratory scan efficacy and permits predictable scan times.


2020 ◽  
Vol 131 ◽  
pp. 109255
Author(s):  
Yunyun Duan ◽  
Jie Zhang ◽  
Zhizheng Zhuo ◽  
Jinli Ding ◽  
Rongkai Ju ◽  
...  

Author(s):  
Christoph H.-J. Endler ◽  
Anton Faron ◽  
Alexander Isaak ◽  
Christoph Katemann ◽  
Narine Mesropyan ◽  
...  

Purpose Compressed sensing (CS) is a method to accelerate MRI acquisition by acquiring less data through undersampling of k-space. In this prospective study we aimed to evaluate whether a three-dimensional (3D) isotropic proton density-weighted fat saturated sequence (PDwFS) with CS can replace conventional multidirectional two-dimensional (2D) sequences at 1.5 Tesla. Materials and Methods 20 patients (45.2 ± 20.2 years; 10 women) with suspected internal knee damage received a 3D PDwFS with CS acceleration factor 8 (acquisition time: 4:11 min) in addition to standard three-plane 2D PDwFS sequences (acquisition time: 4:05 min + 3:03 min + 4:46 min = 11:54 min) at 1.5 Tesla. Scores for homogeneity of fat saturation, image sharpness, and artifacts were rated by two board-certified radiologists on the basis of 5-point Likert scales. Based on these ratings, an overall image quality score was generated. Additionally, quantitative contrast ratios for the menisci (MEN), the anterior (ACL) and the posterior cruciate ligament (PCL) in comparison with the popliteus muscle were calculated. Results The overall image quality was rated superior in 3D PDwFS compared to 2D PDwFS sequences (14.45 ± 0.83 vs. 12.85 ± 0.99; p < 0.01), particularly due to fewer artifacts (4.65 ± 0.67 vs. 3.65 ± 0.49; p < 0.01) and a more homogeneous fat saturation (4.95 ± 0.22 vs. 4.55 ± 0.51; p < 0.01). Scores for image sharpness were comparable (4.80 ± 0.41 vs. 4.65 ± 0.49; p = 0.30). Quantitative contrast ratios for all measured structures were superior in 3D PDwFS (MEN: p < 0.05; ACL: p = 0.06; PCL: p = 0.33). In one case a meniscal tear was only diagnosed using multiplanar reformation of 3D PDwFS, but it would have been missed on standard multiplanar 2D sequences. Conclusion An isotropic fat-saturated 3D PD sequence with CS enables fast and high-quality 3D imaging of the knee joint at 1.5 T and may replace conventional multiplanar 2D sequences. Besides faster image acquisition, the 3D sequence provides advantages in small structure imaging by multiplanar reformation. Key Points:  Citation Format


Sign in / Sign up

Export Citation Format

Share Document