scholarly journals A PCR-based diagnostic assay for the detection of Roseovarius crassostreae in Crassostrea virginica affected by juvenile oyster disease (JOD)

2005 ◽  
Vol 67 ◽  
pp. 155-162 ◽  
Author(s):  
AP Maloy ◽  
BJ Barber ◽  
KJ Boettcher
2000 ◽  
Vol 66 (9) ◽  
pp. 3924-3930 ◽  
Author(s):  
Katherine J. Boettcher ◽  
Bruce J. Barber ◽  
John T. Singer

ABSTRACT Juvenile oyster disease (JOD) causes significant annual mortalities of hatchery-produced Eastern oysters, Crassostrea virginica, cultured in the Northeast. We have reported that a novel species of the α-proteobacteria Roseobacter group (designated CVSP) was numerically dominant in JOD-affected animals sampled during the 1997 epizootic on the Damariscotta River, Maine. In this study we report the isolation of CVSP bacteria from JOD-affected oysters during three separate epizootics in 1998. These bacteria were not detected in nonaffected oysters at the enzootic site, nor in animals raised at a JOD-free site. Animals raised at the JOD enzootic site that were unaffected by JOD were stably and persistently colonized by Stappia stellulata-like strains. These isolates (designated M1) inhibited the growth of CVSP bacteria in a disk-diffusion assay and thus may have prevented colonization of these animals by CVSP bacteria in situ. Laboratory-maintained C. virginica injected with CVSP bacteria experienced statistically significant elevated mortalities compared to controls, and CVSP bacteria were recovered from these animals during the mortality events. Together, these results provide additional evidence that CVSP bacteria are the etiological agent of JOD. Further, there are no other descriptions of specific marine α-proteobacteria that have been successfully cultivated from a defined animal host. Thus, this system presents an opportunity to investigate both bacterial and host factors involved in the establishment of such associations and the role of the invertebrate host in the ecology of these marine α-proteobacteria.


1999 ◽  
Vol 65 (6) ◽  
pp. 2534-2539 ◽  
Author(s):  
Katherine J. Boettcher ◽  
Bruce J. Barber ◽  
John T. Singer

ABSTRACT Since 1988, juvenile oyster disease (JOD) has resulted in high seasonal losses of cultured Eastern oysters (Crassostrea virginica) in the Northeast. Although the cause of JOD remains unknown, most evidence is consistent with either a bacterial or a protistan etiology. For the purpose of discerning between these hypotheses, the antibacterial antibiotics norfloxacin and sulfadimethoxine-ormetoprim (Romet-B) were tested for the ability to delay the onset of JOD mortality and/or reduce the JOD mortality of cultured juvenile C. virginica. Hatchery-produced C. virginica seed were exposed in triplicate groups of 3,000 animals each to either norfloxacin, sulfadimethoxine-ormetoprim, or filter-sterilized seawater (FSSW) and deployed in floating trays on the Damariscotta River of Maine on 17 July 1997. Each week thereafter, a subset of animals from each group was reexposed to the assigned treatment. Repeated immersion in either a sulfadimethoxine-ormetoprim or a norfloxacin solution resulted in a delay in the onset of JOD mortality in treated animals and reduced weekly mortality rates. Weekly treatments with either norfloxacin or sulfadimethoxine-ormetoprim also resulted in a statistically significant reduction in cumulative mortality (55 and 67% respectively) compared to animals treated weekly with FSSW (81%) or those that had received only a single treatment with either norfloxacin, sulfadimethoxine-ormetoprim, or FSSW (77, 84, and 82%, respectively). Bacteriological analyses revealed a numerically dominant bacterium in those animals with obvious signs of JOD. Sequence analysis of the 16S rRNA gene from these bacteria indicates that they are a previously undescribed species of marine α-proteobacteria.


Author(s):  
George G. Cocks ◽  
Louis Leibovitz ◽  
DoSuk D. Lee

Our understanding of the structure and the formation of inorganic minerals in the bivalve shells has been considerably advanced by the use of electron microscope. However, very little is known about the ultrastructure of valves in the larval stage of the oysters. The present study examines the developmental changes which occur between the time of conception to the early stages of Dissoconch in the Crassostrea virginica(Gmelin), focusing on the initial deposition of inorganic crystals by the oysters.The spawning was induced by elevating the temperature of the seawater where the adult oysters were conditioned. The eggs and sperm were collected separately, then immediately mixed for the fertilizations to occur. Fertilized animals were kept in the incubator where various stages of development were stopped and observed. The detailed analysis of the early stages of growth showed that CaCO3 crystals(aragonite), with orthorhombic crystal structure, are deposited as early as gastrula stage(Figuresla-b). The next stage in development, the prodissoconch, revealed that the crystal orientation is in the form of spherulites.


2020 ◽  
Vol 640 ◽  
pp. 79-105
Author(s):  
ET Porter ◽  
E Robins ◽  
S Davis ◽  
R Lacouture ◽  
JC Cornwell

Anthropogenic disturbances in the Chesapeake Bay (USA) have depleted eastern oyster Crassostrea virginica abundance and altered the estuary’s environment and water quality. Efforts to rehabilitate oyster populations are underway; however, the effect of oyster biodeposits on water quality and plankton community structure are not clear. In July 2017, we used 6 shear turbulence resuspension mesocosms (STURMs) to determine differences in plankton composition with and without the daily addition of oyster biodeposits to a muddy sediment bottom. STURM systems had a volume-weighted root mean square turbulent velocity of 1.08 cm s-1, energy dissipation rate of ~0.08 cm2 s-3, and bottom shear stress of ~0.36-0.51 Pa during mixing-on periods during 4 wk of tidal resuspension. Phytoplankton increased their chlorophyll a content in their cells in response to low light in tanks with biodeposits. The diatom Skeletonema costatum bloomed and had significantly longer chains in tanks without biodeposits. These tanks also had significantly lower concentrations of total suspended solids, zooplankton carbon, and nitrite +nitrate, and higher phytoplankton carbon concentrations. Results suggest that the absence of biodeposit resuspension initiates nitrogen uptake for diatom reproduction, increasing the cell densities of S. costatum. The low abundance of the zooplankton population in non-biodeposit tanks suggests an inability of zooplankton to graze on S. costatum and negative effects of S. costatum on zooplankton. A high abundance of the copepod Acartia tonsa in biodeposit tanks may have reduced S. costatum chain length. Oyster biodeposit addition and resuspension efficiently transferred phytoplankton carbon to zooplankton carbon, thus supporting the food web in the estuary.


Sign in / Sign up

Export Citation Format

Share Document