juvenile oyster disease
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Linda Kessner ◽  
Edward Spinard ◽  
Marta Gomez-Chiarri ◽  
David C. Rowley ◽  
David R. Nelson

Aliiroseovarius crassostreaeCV919-312 is a marine alphaproteobacterium and the causative agent ofRoseovariusoyster disease. We announce here the draft genome sequence ofA. crassostreaeCV919-312 and identify potential virulence genes involved in pathogenicity.


2005 ◽  
Vol 55 (4) ◽  
pp. 1531-1537 ◽  
Author(s):  
Katherine J. Boettcher ◽  
Kara K. Geaghan ◽  
Aaron P. Maloy ◽  
Bruce J. Barber

An α-proteobacterium has been identified which is believed to be the causative agent of juvenile oyster disease (JOD). Since its first isolation in 1997, the bacterium has been recovered as the numerically dominant species from JOD-affected animals throughout the north-eastern United States (Maine, New York and Massachusetts). Colonies are usually beige to pinkish-beige, although the majority of isolates recovered in 2003 from an epizootic in Martha's Vineyard, Massachusetts, produce colonies with a greenish-yellow appearance. The cells are Gram-negative, aerobic, strictly marine and rod or ovoid in appearance. They are actively motile by one or two flagella, but cells are also observed to produce tufts of polar fimbriae. The principal fatty acid in whole cells is C18 : 1 ω7c and other characteristic fatty acids are C16 : 0, C10 : 0 3-OH, 11-methyl C18 : 1 ω7c and C18 : 0. Almost without exception, isolates have 16S rRNA gene sequences that are 100 % identical to each other. Phylogenetic analyses place the organism within the Roseobacter clade of the α-Proteobacteria, with moderate bootstrap support for inclusion in the genus Roseovarius. DNA–DNA relatedness values from pairwise comparisons of this organism with the type species of the genus (Roseovarius tolerans) and the only other described species in this genus, Roseovarius nubinhibens, were 11 and 47 %, respectively. Phenotypic and biochemical dissimilarities also support the assignment of this bacterium to a novel species. The name Roseovarius crassostreae sp. nov. is proposed, with the type strain CV919-312T (=ATCC BAA-1102T=DSM 16950T).


2000 ◽  
Vol 66 (9) ◽  
pp. 3924-3930 ◽  
Author(s):  
Katherine J. Boettcher ◽  
Bruce J. Barber ◽  
John T. Singer

ABSTRACT Juvenile oyster disease (JOD) causes significant annual mortalities of hatchery-produced Eastern oysters, Crassostrea virginica, cultured in the Northeast. We have reported that a novel species of the α-proteobacteria Roseobacter group (designated CVSP) was numerically dominant in JOD-affected animals sampled during the 1997 epizootic on the Damariscotta River, Maine. In this study we report the isolation of CVSP bacteria from JOD-affected oysters during three separate epizootics in 1998. These bacteria were not detected in nonaffected oysters at the enzootic site, nor in animals raised at a JOD-free site. Animals raised at the JOD enzootic site that were unaffected by JOD were stably and persistently colonized by Stappia stellulata-like strains. These isolates (designated M1) inhibited the growth of CVSP bacteria in a disk-diffusion assay and thus may have prevented colonization of these animals by CVSP bacteria in situ. Laboratory-maintained C. virginica injected with CVSP bacteria experienced statistically significant elevated mortalities compared to controls, and CVSP bacteria were recovered from these animals during the mortality events. Together, these results provide additional evidence that CVSP bacteria are the etiological agent of JOD. Further, there are no other descriptions of specific marine α-proteobacteria that have been successfully cultivated from a defined animal host. Thus, this system presents an opportunity to investigate both bacterial and host factors involved in the establishment of such associations and the role of the invertebrate host in the ecology of these marine α-proteobacteria.


1999 ◽  
Vol 65 (6) ◽  
pp. 2534-2539 ◽  
Author(s):  
Katherine J. Boettcher ◽  
Bruce J. Barber ◽  
John T. Singer

ABSTRACT Since 1988, juvenile oyster disease (JOD) has resulted in high seasonal losses of cultured Eastern oysters (Crassostrea virginica) in the Northeast. Although the cause of JOD remains unknown, most evidence is consistent with either a bacterial or a protistan etiology. For the purpose of discerning between these hypotheses, the antibacterial antibiotics norfloxacin and sulfadimethoxine-ormetoprim (Romet-B) were tested for the ability to delay the onset of JOD mortality and/or reduce the JOD mortality of cultured juvenile C. virginica. Hatchery-produced C. virginica seed were exposed in triplicate groups of 3,000 animals each to either norfloxacin, sulfadimethoxine-ormetoprim, or filter-sterilized seawater (FSSW) and deployed in floating trays on the Damariscotta River of Maine on 17 July 1997. Each week thereafter, a subset of animals from each group was reexposed to the assigned treatment. Repeated immersion in either a sulfadimethoxine-ormetoprim or a norfloxacin solution resulted in a delay in the onset of JOD mortality in treated animals and reduced weekly mortality rates. Weekly treatments with either norfloxacin or sulfadimethoxine-ormetoprim also resulted in a statistically significant reduction in cumulative mortality (55 and 67% respectively) compared to animals treated weekly with FSSW (81%) or those that had received only a single treatment with either norfloxacin, sulfadimethoxine-ormetoprim, or FSSW (77, 84, and 82%, respectively). Bacteriological analyses revealed a numerically dominant bacterium in those animals with obvious signs of JOD. Sequence analysis of the 16S rRNA gene from these bacteria indicates that they are a previously undescribed species of marine α-proteobacteria.


Sign in / Sign up

Export Citation Format

Share Document