scholarly journals Small-scale clumps of dark matter

2014 ◽  
Vol 57 (1) ◽  
pp. 1-36 ◽  
Author(s):  
V S Berezinsky ◽  
V I Dokuchaev ◽  
Yu N Eroshenko
Keyword(s):  
2019 ◽  
Vol 485 (2) ◽  
pp. 2861-2876 ◽  
Author(s):  
Benjamin V Church ◽  
Philip Mocz ◽  
Jeremiah P Ostriker

ABSTRACT Although highly successful on cosmological scales, cold dark matter (CDM) models predict unobserved overdense ‘cusps’ in dwarf galaxies and overestimate their formation rate. We consider an ultralight axion-like scalar boson which promises to reduce these observational discrepancies at galactic scales. The model, known as fuzzy dark matter (FDM), avoids cusps, suppresses small-scale power, and delays galaxy formation via macroscopic quantum pressure. We compare the substructure and density fluctuations of galactic dark matter haloes comprised of ultralight axions to conventional CDM results. Besides self-gravitating subhaloes, FDM includes non-virialized overdense wavelets formed by quantum interference patterns, which are an efficient source of heating to galactic discs. We find that, in the solar neighbourhood, wavelet heating is sufficient to give the oldest disc stars a velocity dispersion of ${\sim } {30}{\, \mathrm{km\, s}^{-1}}$ within a Hubble time if energy is not lost from the disc, the velocity dispersion increasing with stellar age as σD ∝ t0.4 in agreement with observations. Furthermore, we calculate the radius-dependent velocity dispersion and corresponding scaleheight caused by the heating of this dynamical substructure in both CDM and FDM with the determination that these effects will produce a flaring that terminates the Milky Way disc at $15\!-\!20{\, \mathrm{kpc}}$. Although the source of thickened discs is not known, the heating due to perturbations caused by dark substructure cannot exceed the total disc velocity dispersion. Therefore, this work provides a lower bound on the FDM particle mass of ma > 0.6 × 10−22 eV. Furthermore, FDM wavelets with this particle mass should be considered a viable mechanism for producing the observed disc thickening with time.


Recent observational and theoretical results on galaxy clustering are reviewed. A major difficulty in relating observations to theory is that the former refer to luminous material whereas the latter is most directly concerned with the gravitationally dominant but invisible dark matter. The simple assumption that the distribution of galaxies generally follows that of the mass appears to conflict with evidence suggesting that galaxies of different kinds are clustered in different ways. If galaxies are indeed biased tracers of the mass, then dynamical estimates of the mean cosmic density, which give Ω « 0.2 may underestimate the global value of Ω. There are now several specific models for the behaviour of density fluctuations from very early times to the present epoch. The late phases of this evolution need to be followed by N -body techniques; simulations of scale-free universes and of universes dominated by various types of elementary particles are discussed. In the former case, the models evolve in a self-similar way; the resulting correlations have a steeper slope than that oberved for the galaxy distribution unless the primordial power spectral index n « 2. Universes dominated by light neutrinos acquire a large coherence length at early times. As a result, an early filamentary phase develops into a present day distribution that is more strongly clustered than observed galaxies and is dominated by a few clumps with masses larger than those of any known object. If the dark matter consists of ‘cold’ particles such as photinos or axions, then structure builds up from subgalactic scales in a roughly hierarchical way. The observed pattern of galaxy clustering can be reproduced if either Ω « 0.2 and the galaxies are distributed as the mass, or if Ω — 1, H 0 = 50 km s -1 Mpc -1 and the galaxies form only at high peaks of the smoothed linear density field. The open model, however, is marginally ruled out by the observed small-scale isotropy of the microwave background, whereas the flat one is consistent with such observations. With no further free parameters a flat cold dark-matter universe produces the correct abundance of rich galaxy clusters and of galactic halos; the latter have flat rotation curves with amplitudes spanning the observed range. Preliminary calculations indicate that the properties of voids may be consistent with the data, but the correlations of rich clusters appear to be somewhat weaker than those reported for Abell clusters.


2020 ◽  
Vol 124 (4) ◽  
Author(s):  
Xiaoyong Chu ◽  
Camilo Garcia-Cely ◽  
Hitoshi Murayama

1996 ◽  
Vol 466 ◽  
pp. 13 ◽  
Author(s):  
Anatoly Klypin ◽  
Joel Primack ◽  
Jon Holtzman

2006 ◽  
Author(s):  
Veniamin Berezinsky ◽  
Vyacheslav Dokuchaev ◽  
Yury Eroshenko

2020 ◽  
Vol 495 (4) ◽  
pp. 4943-4964
Author(s):  
Jens Stücker ◽  
Oliver Hahn ◽  
Raul E Angulo ◽  
Simon D M White

ABSTRACT At early times, dark matter has a thermal velocity dispersion of unknown amplitude which, for warm dark matter (WDM) models, can influence the formation of non-linear structure on observable scales. We propose a new scheme to simulate cosmologies with a small-scale suppression of perturbations that combines two previous methods in a way that avoids the numerical artefacts which have so far prevented either from producing fully reliable results. At low densities and throughout most of the cosmological volume, we represent the dark matter phase sheet directly using high-accuracy interpolation, thereby avoiding the artificial fragmentation which afflicts particle-based methods in this regime. Such phase-sheet methods are, however, unable to follow the rapidly increasing complexity of the denser regions of dark matter haloes, so for these we switch to an N-body scheme which uses the geodesic deviation equation to track phase-sheet properties local to each particle. In addition, we present a novel high-resolution force calculation scheme based on an oct-tree of cubic force resolution elements which is well suited to approximate the force field of our combined sheet+particle distribution. Our hybrid simulation scheme enables the first reliable simulations of the internal structure of low-mass haloes in a WDM cosmology.


2004 ◽  
Vol 220 ◽  
pp. 91-98 ◽  
Author(s):  
J. E. Taylor ◽  
J. Silk ◽  
A. Babul

Models of structure formation based on cold dark matter predict that most of the small dark matter haloes that first formed at high redshift would have merged into larger systems by the present epoch. Substructure in present-day haloes preserves the remains of these ancient systems, providing the only direct information we may ever have about the low-mass end of the power spectrum. We describe some recent attempts to model halo substructure down to very small masses, using a semi-analytic model of halo formation. We make a preliminary comparison between the model predictions, observations of substructure in lensed systems, and the properties of local satellite galaxies.


2018 ◽  
Vol 483 (1) ◽  
pp. 289-298 ◽  
Author(s):  
Victor H Robles ◽  
James S Bullock ◽  
Michael Boylan-Kolchin
Keyword(s):  

2020 ◽  
Vol 495 (3) ◽  
pp. 3233-3251 ◽  
Author(s):  
Aseem Paranjape ◽  
Shadab Alam

ABSTRACT We study the Voronoi volume function (VVF) – the distribution of cell volumes (or inverse local number density) in the Voronoi tessellation of any set of cosmological tracers (galaxies/haloes). We show that the shape of the VVF of biased tracers responds sensitively to physical properties such as halo mass, large-scale environment, substructure, and redshift-space effects, making this a hitherto unexplored probe of both primordial cosmology and galaxy evolution. Using convenient summary statistics – the width, median, and a low percentile of the VVF as functions of average tracer number density – we explore these effects for tracer populations in a suite of N-body simulations of a range of dark matter models. Our summary statistics sensitively probe primordial features such as small-scale oscillations in the initial matter power spectrum (as arise in models involving collisional effects in the dark sector), while being largely insensitive to a truncation of initial power (as in warm dark matter models). For vanilla cold dark matter (CDM) cosmologies, the summary statistics display strong evolution and redshift-space effects, and are also sensitive to cosmological parameter values for realistic tracer samples. Comparing the VVF of galaxies in the Galaxies & Mass Assembly (GAMA) survey with that of abundance-matched CDM (sub)haloes tentatively reveals environmental effects in GAMA beyond halo mass (modulo unmodelled satellite properties). Our exploratory analysis thus paves the way for using the VVF as a new probe of galaxy evolution physics as well as the nature of dark matter and dark energy.


Sign in / Sign up

Export Citation Format

Share Document