galaxy evolution
Recently Published Documents


TOTAL DOCUMENTS

1156
(FIVE YEARS 181)

H-INDEX

66
(FIVE YEARS 5)

2022 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Griffin Shapiro ◽  
David V. Stark ◽  
Karen L. Masters

Abstract Astronomical observations of neutral atomic hydrogen (H i) are an important tracer of several key processes of galaxy evolution, but face significant difficulties with terrestrial telescopes. Among these is source confusion, or the inability to distinguish between emission from multiple nearby sources separated by distances smaller than the telescope’s spatial resolution. Confusion can compromise the data for the primary target if the flux from the secondary galaxy is sufficient. This paper presents an assessment of the confusion-flagging methods of the H i-MaNGA survey, using higher-resolution H i data from the Westorbork Synthesis Radio Telescope-Apertif survey. We find that removing potentially confused observations using a confusion probability metric—calculated from the relationship between galaxy color, surface brightness, and H i content—successfully eliminates all significantly confused observations in our sample, although roughly half of the eliminated observations are not significantly confused.



2022 ◽  
Vol 924 (1) ◽  
pp. 32
Author(s):  
Alexa Villaume ◽  
Aaron J. Romanowsky ◽  
Jean Brodie ◽  
Pieter van Dokkum ◽  
Charlie Conroy ◽  
...  

Abstract We use the Keck Cosmic Web Imager integral field unit spectrograph to (1) measure the global stellar population parameters for the ultra-diffuse galaxy (UDG) Dragonfly 44 (DF44) to much higher precision than previously possible for any UDG and (2) for the first time measure spatially resolved stellar population parameters of a UDG. We find that DF44 falls below the mass–metallicity relation established by canonical dwarf galaxies both in and beyond the Local Group. We measure a flat radial age gradient ( m logage = + 0.01 − 0.08 + 0.08 log Gyr kpc−1) and a flat to positive metallicity gradient ( m [ Fe / H ] = + 0.09 − 0.12 + 0.11 dex kpc−1), which are inconsistent with the gradients measured in similarly pressure-supported dwarf galaxies. We also measure a negative [Mg/Fe] gradient ( m [ Mg / Fe ] = − 0.20 − 0.18 + 0.18 ) dex kpc−1 such that the central 1.5 kpc of DF44 has stellar population parameters comparable to metal-poor globular clusters. Overall, DF44 does not have internal properties similar to other dwarf galaxies and is inconsistent with it having been puffed up through a prolonged, bursty star formation history, as suggested by some simulations. Rather, the evidence indicates that DF44 experienced an intense epoch of “inside-out” star formation and then quenched early and catastrophically, such that star formation was cut off more quickly than in canonical dwarf galaxies.



2021 ◽  
Vol 53 (3) ◽  
pp. 428-250
Author(s):  
Premana Wardayanti Premadi ◽  
Dading Hadi Nugroho ◽  
Anton Timur Jaelani

We report the results of combined analyses of X-ray and optical data of two galaxy clusters, CL 0024+1654 and RX J0152.7−1357 at redshift z = 0.395 and z = 0.830, respectively, offering a holistic physical description of the two clusters. Our X-ray analysis yielded temperature and density profiles of the gas in the intra-cluster medium (ICM). Using optical photometric and spectroscopic data, complemented with mass distribution from a gravitational lensing study, we investigated any possible correlation between the physical properties of the galaxy members, i.e. their color, morphology, and star formation rate (SFR), and their environments. We quantified the properties of the environment around each galaxy by galaxy number density, ICM temperature, and mass density. Although our results show that the two clusters exhibit a weaker correlation compared to relaxed clusters, it still confirms the significant effect of the ICM on the SFR in the galaxies. The close relation between the physical properties of galaxies and the condition of their immediate environment found in this work indicates the locality of galaxy evolution, even within a larger bound system such as a cluster. Various physical mechanisms are suggested to explain the relation between the properties of galaxies and their environment.



Author(s):  
C. Gómez-Guijarro ◽  
D. Elbaz ◽  
M. Xiao ◽  
V. I. Kokorev ◽  
G. E. Magdis ◽  
...  


Author(s):  
Geoff G Murphy ◽  
Robert M Yates ◽  
Shazrene S Mohamed

Abstract We present an analysis of the formation and chemical evolution of stellar haloes around (a) Milky Way Analogue (MWA) galaxies and (b) galaxy clusters in the L-Galaxies 2020 semi-analytic model of galaxy evolution. Observed stellar halo properties are better reproduced when assuming a gradual stripping model for the removal of cold gas and stars from satellites, compared to an instantaneous stripping model. The slope of the stellar mass – metallicity relation for MWA stellar haloes is in good agreement with that observed in the local Universe. This extends the good agreement between L-Galaxies 2020 and metallicity observations from the gas and stars inside galaxies to those outside. Halo stars contribute on average only ∼0.1 per cent of the total circumgalactic medium (CGM) enrichment by z = 0 in MWAs, ejecting predominantly carbon produced by AGB stars. Around a quarter of MWAs have a single ‘significant progenitor’ with a mean mass of ∼ 2.3 × 109M⊙, similar to that measured for Gaia Enceladus. For galaxy clusters, L-Galaxies 2020 shows good correspondence with observations of stellar halo mass fractions, but slightly over-predicts stellar masses. Assuming a Navarro-Frenk-White profile for the stellar halo mass distribution provides the best agreement. On average, the intracluster stellar component (ICS) is responsible for 5.4 per cent of the total intracluster medium (ICM) iron enrichment, exceeding the contribution from the brightest cluster galaxy (BCG) by z = 0. We find that considering gradual stripping of satellites and realistic radial profiles is crucial for accurately modelling stellar halo formation on all scales in semi-analytic models.



2021 ◽  
Vol 5 (12) ◽  
pp. 278
Author(s):  
Sally Zhu ◽  
Rahul Sharma ◽  
Clayton J. Strawn

Abstract Galaxies are surrounded by low-density, highly-ionized clouds of gas, called the Circumgalactic Medium (CGM), which provides insight into galaxy evolution. CGM observations are sensitive to ionization levels, which requires studying ionization types: photoionization (PI), more density-dependent and associated with cooler gas, and collisional ionization (CI), more temperature-dependent and associated with hotter gas. We analyzed PI and CI components for oxygen ionization states using cosmological galaxy simulations. For each ion, we plotted mass distributions into PI and CI phases and created 2D covering-fraction projections of column density at different thresholds. We analyzed changes for different mass-bin galaxies. Our results are: O vii and O ix are the only predominantly-CI ion states. O vi is a local minimum in both PI and CI gas. Column density distributions greatly emphasize higher ion states. Shapes of covering-fraction plots at higher thresholds resemble the 3D-plots. CI gas dominates more in higher mass galaxy simulations.





2021 ◽  
Author(s):  
O.K. Sil'chenko
Keyword(s):  


2021 ◽  
Vol 923 (1) ◽  
pp. 11
Author(s):  
Josha van Houdt ◽  
Arjen van der Wel ◽  
Rachel Bezanson ◽  
Marijn Franx ◽  
Francesco d’Eugenio ◽  
...  

Abstract We present spatially resolved stellar kinematics for 797 z = 0.6–1 galaxies selected from the LEGA-C survey and construct axisymmetric Jeans models to quantify their dynamical mass and degree of rotational support. The survey is K s -band selected, irrespective of color or morphological type, and allows for a first assessment of the stellar dynamical structure of the general L* galaxy population at large look-back time. Using light profiles from Hubble Space Telescope imaging as a tracer, our approach corrects for observational effects (seeing convolution and slit geometry), and uses well-informed priors on inclination, anisotropy, and a non-luminous mass component. Tabulated data include total mass estimates in a series of spherical apertures (1, 5, and 10 kpc; 1 × and 2 × R e), as well as rotational velocities, velocity dispersions, and anisotropy. We show that almost all star-forming galaxies and ∼50% of quiescent galaxies are rotation dominated, with deprojected V/σ ∼ 1–2. Revealing the complexity in galaxy evolution, we find that the most massive star-forming galaxies are among the most rotation dominated, and the most massive quiescent galaxies among the least rotation-dominated galaxies. These measurements set a new benchmark for studying galaxy evolution, using stellar dynamical structure for galaxies at large look-back time. Together with the additional information on stellar population properties from the LEGA-C spectra, the dynamical mass and V/σ measurements presented here create new avenues for studying galaxy evolution at large look-back time.



2021 ◽  
Vol 923 (2) ◽  
pp. 257
Author(s):  
Jennifer Kadowaki ◽  
Dennis Zaritsky ◽  
R. L. Donnerstein ◽  
Pranjal RS ◽  
Ananthan Karunakaran ◽  
...  

Abstract We present new redshift measurements for 19 candidate ultra-diffuse galaxies (UDGs) from the Systematically Measuring Ultra-Diffuse Galaxies (SMUDGes) survey after conducting a long-slit spectroscopic follow-up campaign on 23 candidates with the Large Binocular Telescope. We combine these results with redshift measurements from other sources for 29 SMUDGes and 20 non-SMUDGes candidate UDGs. Together, this sample yields 44 spectroscopically confirmed UDGs (r e ≥ 1.5 kpc and μ g (0) ≥ 24 mag arcsec−2 within uncertainties) and spans cluster and field environments, with all but one projected on the Coma cluster and environs. We find no statistically significant differences in the structural parameters of cluster and noncluster confirmed UDGs, although there are hints of differences among the axis ratio distributions. Similarly, we find no significant structural differences among those in locally dense or sparse environments. However, we observe a significant difference in color with respect to projected clustercentric radius, confirming trends observed previously in statistical UDG samples. This trend strengthens further when considering whether UDGs reside in either cluster or locally dense environments, suggesting starkly different star formation histories for UDGs residing in high- and low-density environments. Of the 16 large (r e ≥ 3.5 kpc) UDGs in our sample, only one is a field galaxy that falls near the early-type galaxy red sequence. No other field UDGs found in low-density environments fall near the red sequence. This finding, in combination with our detection of Galaxy Evolution Explorer NUV flux in nearly half of the UDGs in sparse environments, suggests that field UDGs are a population of slowly evolving galaxies.



Sign in / Sign up

Export Citation Format

Share Document