deviation equation
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mengchen Li ◽  
Zhizhong Zhao ◽  
Haizhi Li ◽  
Yanmin Wang ◽  
Qingliang Wang ◽  
...  

There exists a great difference of the photocatalytic degradation efficiency between nanoscaled TiO2 modified-emulsified asphalt applied as the fog sealing under the indoor and outdoor environment. Much efforts have been made by many investigators to study this issue. However, most of them focus on the ideal condition, ignoring the degradation efficiency examination of TiO2 in the actual engineering practice. A series of field tests are carried out, accompanied with laboratory experiments, to analyze and consequently compare the photocatalytic degradation efficiency of nanoscaled TiO2 in the indoor and outdoor conditions, respectively. Regression analysis was employed to investigate the influence factors of degradation efficiency, by which formula of function of factors influencing degradation efficiency and degradation efficiency deviation equation are obtained. The results show that when the degradation efficiency of NO2 in the laboratory test is as high as 63%, the degradation efficiency affected by the environmental factors is only 25% in the actual engineering practice. Based on the measurement data, detection indicators and criteria can be provided, which is of great significance in the establishment of the construction quality control system.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
V. P. Vandeev ◽  
A. N. Semenova

AbstractThe article considers tidal forces in the vicinity of the Kottler black hole. We find a solution of the geodesic deviation equation for radially falling bodies, which is determined by elliptic integrals. And also the asymptotic behavior of all spatial geodesic deviation vector components were found. We demonstrate that the radial component of the tidal force changes sign outside the single event horizon for any negative values of the cosmological constant, in contrast to the Schwarzschild black hole, where all the components of the tidal force are sign-constant. We also find the similarity between the Kottler black hole and the Reissner–Nordström black hole, because we indicate the value of the cosmological constant, which ensures the existence of two horizons of the black hole, between which the angular components of the tidal force change sign. It was possible to detect non-analytical behavior of geodesic deviation vector components in anti-de Sitter spacetime and to describe it locally.


2021 ◽  
pp. 104347
Author(s):  
Jafar Khodagholizadeh ◽  
Amir H. Abbassi ◽  
Ali Vahedi ◽  
K. Babaei

2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Jin-Zhao Yang ◽  
Shahab Shahidi ◽  
Tiberiu Harko ◽  
Shi-Dong Liang

AbstractWe consider the geodesic deviation equation, describing the relative accelerations of nearby particles, and the Raychaudhuri equation, giving the evolution of the kinematical quantities associated with deformations (expansion, shear and rotation) in the Weyl-type f(Q, T) gravity, in which the non-metricity Q is represented in the standard Weyl form, fully determined by the Weyl vector, while T represents the trace of the matter energy–momentum tensor. The effects of the Weyl geometry and of the extra force induced by the non-metricity–matter coupling are explicitly taken into account. The Newtonian limit of the theory is investigated, and the generalized Poisson equation, containing correction terms coming from the Weyl geometry, and from the geometry matter coupling, is derived. As a physical application of the geodesic deviation equation the modifications of the tidal forces, due to the non-metricity–matter coupling, are obtained in the weak-field approximation. The tidal motion of test particles is directly influenced by the gradients of the extra force, and of the Weyl vector. As a concrete astrophysical example we obtain the expression of the Roche limit (the orbital distance at which a satellite begins to be tidally torn apart by the body it orbits) in the Weyl-type f(Q, T) gravity.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Z. Haba

AbstractWe consider an equation of the geodesic deviation appearing in the problem of gravitational wave detection in an environment of gravitons. We investigate a state-dependent graviton noise (as discussed in a recent paper by Parikh,Wilczek and Zahariade) from the point of view of the Feynman integral and stochastic differential equations. The evolution of the density matrix and the transition probability in an environment of gravitons is obtained. We express the time evolution by a solution of a stochastic geodesic deviation equation with a noise dependent on the quantum state of the gravitational field.


2020 ◽  
Vol 29 (11) ◽  
pp. 2041014
Author(s):  
Haroldo C. D. Lima ◽  
Luís C. B. Crispino

Tidal forces produced by black holes are an important result of General Relativity related to the spacetime curvature tensor. Among the astrophysical implications of tidal forces, the tidal disruption events stand out. We analyze the tidal forces in the spacetime of an electrically charged Hayward regular black hole, obtaining the components of the tidal tensor and the geodesic deviation equation. We find that the radial and angular tidal forces may vanish and change sign unlike in the Schwarzschild spacetime. We note that tidal forces are finite at the origin of the radial coordinate in this regular black hole spacetime. We obtain the geodesic deviation vector for a body constituted of dust infalling towards the black hole with two different initial conditions.


2020 ◽  
Vol 495 (4) ◽  
pp. 4943-4964
Author(s):  
Jens Stücker ◽  
Oliver Hahn ◽  
Raul E Angulo ◽  
Simon D M White

ABSTRACT At early times, dark matter has a thermal velocity dispersion of unknown amplitude which, for warm dark matter (WDM) models, can influence the formation of non-linear structure on observable scales. We propose a new scheme to simulate cosmologies with a small-scale suppression of perturbations that combines two previous methods in a way that avoids the numerical artefacts which have so far prevented either from producing fully reliable results. At low densities and throughout most of the cosmological volume, we represent the dark matter phase sheet directly using high-accuracy interpolation, thereby avoiding the artificial fragmentation which afflicts particle-based methods in this regime. Such phase-sheet methods are, however, unable to follow the rapidly increasing complexity of the denser regions of dark matter haloes, so for these we switch to an N-body scheme which uses the geodesic deviation equation to track phase-sheet properties local to each particle. In addition, we present a novel high-resolution force calculation scheme based on an oct-tree of cubic force resolution elements which is well suited to approximate the force field of our combined sheet+particle distribution. Our hybrid simulation scheme enables the first reliable simulations of the internal structure of low-mass haloes in a WDM cosmology.


Sign in / Sign up

Export Citation Format

Share Document