scholarly journals Mutual Authentication in Body Area Networks (BANs) Using Multi-Biometric and Physiological Signal-Based Key Agreement

2021 ◽  
Vol 9 (1) ◽  
pp. 108-120
Author(s):  
Nur Adibah Saffa Aziz

The development of wireless technology has had a major impact on the wireless body area networks (WBANs) especially in the medical field where a small wireless sensor is installed in, on, or around the patient’s body for real-time health monitoring and personalized medical treatment. However, the data is collected by the sensors and transmitted via wireless channels. This could make the channel vulnerable to being accessed and falsified by an unauthorized user and may put the lives of the patient at risk and might give a false alarm. Therefore, a secure authentication and data encryption scheme in BANs is needed in a device to establish the interaction. The asymmetric cryptosystems that function in BANs can cause a Man-in-the-Middle attack because the initial requirement in BAN requires the user to configure a master key or password. The impersonation attack may also involve BAN where other individual pretends to be the owner of the devices and lastly Eavesdropping attack where the attack eavesdrops on transmission to unlock devices. With the existing schemes, mutual authentication using the biometric features (fingerprint) and the physiological signal from the electrocardiogram database is used to make sure the authentication is more secure, reliable, and accurate. In this paper, we proposed a new multifactor authentication scheme on biometric authentication which is the retina scan. We proposed the retina scan because the retina of the human eye is unique, remains the same, and cannot be obtained from anywhere which makes it difficult to forge. We also added a new device which is a smart watch to receive a key agreement message from the fingerprint to double confirm the same identification. This is to make sure high security is obtained and offered simplicity, efficiency, and precision scheme for the authentication.

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 78484-78502 ◽  
Author(s):  
Mana Al Reshan ◽  
Hang Liu ◽  
Chunqiang Hu ◽  
Jiguo Yu

2017 ◽  
Vol 129 ◽  
pp. 429-443 ◽  
Author(s):  
Xiong Li ◽  
Maged Hamada Ibrahim ◽  
Saru Kumari ◽  
Arun Kumar Sangaiah ◽  
Vidushi Gupta ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 404
Author(s):  
Yasmeen Al-Saeed ◽  
Eman Eldaydamony ◽  
Ahmed Atwan ◽  
Mohammed Elmogy ◽  
Osama Ouda

Wireless Body Area Networks (WBANs) are increasingly employed in different medical applications, such as remote health monitoring, early detection of medical conditions, and computer-assisted rehabilitation. A WBAN connects a number of sensor nodes implanted in and/or fixed on the human body for monitoring his/her physiological characteristics. Although medical healthcare systems could significantly benefit from the advancement of WBAN technology, collecting and transmitting private physiological data in such an open environment raises serious security and privacy concerns. In this paper, we propose a novel key-agreement protocol to secure communications among sensor nodes of WBANs. The proposed protocol is based on measuring and verifying common physiological features at both sender and recipient sensors prior to communicating. Unlike existing protocols, the proposed protocol enables communicating sensors to use their previous session pre-knowledge for secure communication within a specific period of time. This will reduce the time required for establishing the shared key as well as avoid retransmitting extracted features in the medium and hence thwarting eavesdropping attacks while maintaining randomness of the key. Experimental results illustrate the superiority of the proposed key agreement protocol in terms of both feature extraction and key agreement phases with an accuracy of 99.50% and an error rate of 0.005%. The efficacy of the proposed protocol with respect to energy and memory utilization is demonstrated compared with existing key agreement protocols.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Younsung Choi ◽  
Junghyun Nam ◽  
Donghoon Lee ◽  
Jiye Kim ◽  
Jaewook Jung ◽  
...  

An anonymous user authentication scheme allows a user, who wants to access a remote application server, to achieve mutual authentication and session key establishment with the server in an anonymous manner. To enhance the security of such authentication schemes, recent researches combined user’s biometrics with a password. However, these authentication schemes are designed for single server environment. So when a user wants to access different application servers, the user has to register many times. To solve this problem, Chuang and Chen proposed an anonymous multiserver authenticated key agreement scheme using smart cards together with passwords and biometrics. Chuang and Chen claimed that their scheme not only supports multiple servers but also achieves various security requirements. However, we show that this scheme is vulnerable to a masquerade attack, a smart card attack, a user impersonation attack, and a DoS attack and does not achieve perfect forward secrecy. We also propose a security enhanced anonymous multiserver authenticated key agreement scheme which addresses all the weaknesses identified in Chuang and Chen’s scheme.


2019 ◽  
Vol 6 (6) ◽  
pp. 10396-10407 ◽  
Author(s):  
Xuanxia Yao ◽  
Wanyou Liao ◽  
Xiaojiang Du ◽  
Xuepeng Cheng ◽  
Mohsen Guizani

Sign in / Sign up

Export Citation Format

Share Document