scholarly journals Some Computations Between Sums of Powers of Consecutive Integers and Alternating Sums of Powers of Consecutive Integers

2019 ◽  
Vol 2 (2) ◽  
pp. 137-143
Author(s):  
Uğur Duran ◽  
Mehmet Acikgoz
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

We study on the sums of powers of consequtive integers and alternating sums of power of consequtive integers. We derive many identities and correlations including Bernoulli, Euler and Genocchi polynomials and numbers.


2017 ◽  
Vol 177 ◽  
pp. 37-42 ◽  
Author(s):  
Victor J.W. Guo ◽  
Qiang-Qiang Jiang

2020 ◽  
Vol 108 (122) ◽  
pp. 103-120
Author(s):  
Neslihan Kilar ◽  
Yilmaz Simsek

The formula for the sums of powers of positive integers, given by Faulhaber in 1631, is proven by using trigonometric identities and some properties of the Bernoulli polynomials. Using trigonometric functions identities and generating functions for some well-known special numbers and polynomials, many novel formulas and relations including alternating sums of powers of positive integers, the Bernoulli polynomials and numbers, the Euler polynomials and numbers, the Fubini numbers, the Stirling numbers, the tangent numbers are also given. Moreover, by applying the Riemann integral and p-adic integrals involving the fermionic p-adic integral and the Volkenborn integral, some new identities and combinatorial sums related to the aforementioned numbers and polynomials are derived. Furthermore, we serve up some revealing and historical remarks and observations on the results of this paper.


10.37236/1876 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
Victor J. W. Guo ◽  
Jiang Zeng

Let $$ S_{m,n}(q):=\sum_{k=1}^{n}\frac{1-q^{2k}}{1-q^2} \left(\frac{1-q^k}{1-q}\right)^{m-1}q^{\frac{m+1}{2}(n-k)}. $$ Generalizing the formulas of Warnaar and Schlosser, we prove that there exist polynomials $P_{m,k}(q)\in{\Bbb Z}[q]$ such that $$ S_{2m+1,n}(q) =\sum_{k=0}^{m}(-1)^kP_{m,k}(q) \frac{(1-q^n)^{m+1-k}(1-q^{n+1})^{m+1-k}q^{kn}} {(1-q^2)(1-q)^{2m-3k}\prod_{i=0}^{k}(1-q^{m+1-i})}, $$ and solve a problem raised by Schlosser. We also show that there is a similar formula for the following $q$-analogue of alternating sums of powers: $$ T_{m,n}(q):=\sum_{k=1}^{n}(-1)^{n-k} \left(\frac{1-q^k}{1-q}\right)^{m}q^{\frac{m}{2}(n-k)}. $$


Author(s):  
Pedro J. Miana ◽  
Natalia Romero

In this chapter, we consider the Catalan numbers, C n = 1 n + 1 2 n n , and two of their generalizations, Catalan triangle numbers, B n , k and A n , k , for n , k ∈ N . They are combinatorial numbers and present interesting properties as recursive formulae, generating functions and combinatorial interpretations. We treat the moments of these Catalan triangle numbers, i.e., with the following sums: ∑ k = 1 n k m B n , k j , ∑ k = 1 n + 1 2 k − 1 m A n , k j , for j , n ∈ N and m ∈ N ∪ 0 . We present their closed expressions for some values of m and j . Alternating sums are also considered for particular powers. Other famous integer sequences are studied in Section 3, and its connection with Catalan triangle numbers are given in Section 4. Finally we conjecture some properties of divisibility of moments and alternating sums of powers in the last section.


10.37236/1824 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael Schlosser

We first show how a special case of Jackson's ${}_8\phi_7$ summation immediately gives Warnaar's $q$-analogue of the sum of the first $n$ cubes, as well as $q$-analogues of the sums of the first $n$ integers and first $n$ squares. Similarly, by appropriately specializing Bailey's terminating very-well-poised balanced ${}_{10}\phi_9$ transformation and applying the terminating very-well-poised ${}_6\phi_5$ summation, we find $q$-analogues for the respective sums of the first $n$ quarts and first $n$ quints. We also derive $q$-analogues of the alternating sums of squares, cubes and quarts, respectively.


Sign in / Sign up

Export Citation Format

Share Document