euler polynomials and numbers
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 12)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yuan He ◽  
Zhuoyu Chen

We perform a further investigation for the multiple zeta values and their variations and generalizations in this paper. By making use of the method of the generating functions and some connections between the higher-order trigonometric functions and the Lerch zeta function, we explicitly evaluate some weighted sums of the multiple zeta, Hurwitz zeta, and alternating multiple zeta values in terms of the Bernoulli and Euler polynomials and numbers. It turns out that various known results are deduced as special cases.


2021 ◽  
Vol 7 (3) ◽  
pp. 3845-3865
Author(s):  
Hye Kyung Kim ◽  
◽  
Dmitry V. Dolgy ◽  

<abstract><p>Many mathematicians have studied degenerate versions of some special polynomials and numbers that can take into account the surrounding environment or a person's psychological burden in recent years, and they've discovered some interesting results. Furthermore, one of the most important approaches for finding the combinatorial identities for the degenerate version of special numbers and polynomials is the umbral calculus. The Catalan numbers and the Daehee numbers play important role in connecting relationship between special numbers.</p> <p>In this paper, we first define the degenerate Catalan-Daehee numbers and polynomials and aim to study the relation between well-known special polynomials and degenerate Catalan-Daehee polynomials of order $ r $ as one of the generalizations of the degenerate Catalan-Daehee polynomials by using the degenerate Sheffer sequences. Some of them include the degenerate and other special polynomials and numbers such as the degenerate falling factorials, the degenerate Bernoulli polynomials and numbers of order $ r $, the degenerate Euler polynomials and numbers of order $ r $, the degenerate Daehee polynomials of order $ r $, the degenerate Bell polynomials, and so on.</p></abstract>


Author(s):  
Waseem Ahmad Khan ◽  
Mehmet Acikgoz ◽  
Ugur Duran

In this paper, we consider a new class of polynomials which is called the multi-poly-Euler polynomials. Then, we investigate their some properties and relations. We provide that the type 2 degenerate multi-poly-Euler polynomials equals a linear combination of the degenerate Euler polynomials of higher order and the degenerate Stirling numbers of the first kind. Moreover, we provide an addition formula and a derivative formula. Furthermore, in a special case, we acquire a correlation between the type 2 degenerate multi-poly-Euler polynomials and degenerate Whitney numbers.


Author(s):  
Waseem Khan

Motivated by Kim-Kim [19] introduced the new type of degenerate poly- Bernoulli polynomials by means of the degenerate polylogarithm function. In this paper, we define the degenerate poly-Frobenius-Euler polynomials, called the new type of degenerate poly-Frobenius-Euler polynomials, by means of the degenerate polylogarithm function. Then, we derive explicit expressions and some identities of those numbers and polynomials.


Author(s):  
Waseem Khan

Kim-Kim [12] introduced the new type of degenerate Bernoulli numbers and polynomials arising from the degenerate logarithm function. In this paper, we introduce a new type of degenerate poly-Euler polynomials and numbers, are called degenerate poly-Euler polynomials and numbers, by using the degenerate polylogarithm function and derive several properties on the degenerate poly-Euler polynomials and numbers. In the last section, we also consider the degenerate unipoly-Euler polynomials attached to an arithmetic function, by using the degenerate polylogarithm function and investigate some identities of those polynomials. In particular, we give some new explicit expressions and identities of degenerate unipoly polynomials related to special numbers and polynomials.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1011 ◽  
Author(s):  
Dae Sik Lee ◽  
Hye Kyung Kim ◽  
Lee-Chae Jang

In recent years, many mathematicians have studied the degenerate versions of many special polynomials and numbers. The polyexponential functions were introduced by Hardy and rediscovered by Kim, as inverses to the polylogarithms functions. The paper is divided two parts. First, we introduce a new type of the type 2 poly-Euler polynomials and numbers constructed from the modified polyexponential function, the so-called type 2 poly-Euler polynomials and numbers. We show various expressions and identities for these polynomials and numbers. Some of them involving the (poly) Euler polynomials and another special numbers and polynomials such as (poly) Bernoulli polynomials, the Stirling numbers of the first kind, the Stirling numbers of the second kind, etc. In final section, we introduce a new type of the type 2 degenerate poly-Euler polynomials and the numbers defined in the previous section. We give explicit expressions and identities involving those polynomials in a similar direction to the previous section.


2020 ◽  
Vol 72 (4) ◽  
pp. 467-482
Author(s):  
T. Komatsu ◽  
J. L. Ramírez ◽  
V. F. Sirvent

UDC 517.5 We introduce a ( p , q ) -analogue of the poly-Euler polynomials and numbers by using the ( p , q ) -polylogarithm function.  These new sequences are generalizations of the poly-Euler numbers and polynomials.  We give several combinatorial identities and properties of these new polynomials, and also show some relations with ( p , q ) -poly-Bernoulli polynomials and ( p , q ) -poly-Cauchy polynomials. The ( p , q ) -analogues generalize the well-known concept of the q -analogue.


2020 ◽  
Vol 108 (122) ◽  
pp. 103-120
Author(s):  
Neslihan Kilar ◽  
Yilmaz Simsek

The formula for the sums of powers of positive integers, given by Faulhaber in 1631, is proven by using trigonometric identities and some properties of the Bernoulli polynomials. Using trigonometric functions identities and generating functions for some well-known special numbers and polynomials, many novel formulas and relations including alternating sums of powers of positive integers, the Bernoulli polynomials and numbers, the Euler polynomials and numbers, the Fubini numbers, the Stirling numbers, the tangent numbers are also given. Moreover, by applying the Riemann integral and p-adic integrals involving the fermionic p-adic integral and the Volkenborn integral, some new identities and combinatorial sums related to the aforementioned numbers and polynomials are derived. Furthermore, we serve up some revealing and historical remarks and observations on the results of this paper.


2019 ◽  
Vol 20 (03) ◽  
pp. 216-224
Author(s):  
Guhyun Na ◽  
Yunju Cho ◽  
Jin-Woo Park

Sign in / Sign up

Export Citation Format

Share Document