Second-order Phase Transition Behavior in a Polymer above the Glass Transition Temperature

Author(s):  
Mitsuru Ishikawa ◽  
Taihei Takahashi ◽  
Yu-ichiro Hayashi ◽  
Maya Akashi ◽  
Takayuki Uwada

<p>Glass transition was primarily considered to be not phase transition; however, it has similarity to the second-order phase transition. Recent single-molecule spectroscopy developments have prompted re-investigating glass transition at the microscopic scale, revealing that glass transition includes phenomena similar to second-order phase transition. They are characterized by microscopic collective polymer motion and discontinuous changes in temperature dependent relaxation times, later of which is similar to critical slowing down, within a temperature window that includes the polymer calorimetric glass transition temperature. Considering that collective motion and critical slowing down are accompaniments to critical phenomena, second-order phase transition behavior was identified in polymer glass transition.</p>

2020 ◽  
Author(s):  
Mitsuru Ishikawa ◽  
Taihei Takahashi ◽  
Yu-ichiro Hayashi ◽  
Maya Akashi ◽  
Takayuki Uwada

<p>Glass transition was primarily considered to be not phase transition; however, it has similarity to the second-order phase transition. Recent single-molecule spectroscopy developments have prompted re-investigating glass transition at the microscopic scale, revealing that glass transition includes phenomena similar to second-order phase transition. They are characterized by microscopic collective polymer motion and discontinuous changes in temperature dependent relaxation times, later of which is similar to critical slowing down, within a temperature window that includes the polymer calorimetric glass transition temperature. Considering that collective motion and critical slowing down are accompaniments to critical phenomena, second-order phase transition behavior was identified in polymer glass transition.</p>


2020 ◽  
Author(s):  
Mitsuru Ishikawa ◽  
Taihei Takahashi ◽  
Yu-ichiro Hayashi ◽  
Maya Akashi ◽  
Takayuki Uwada

<p>Glass transition was primarily considered to be not phase transition; however, it has similarity to the second-order phase transition. Recent single-molecule spectroscopy developments have prompted re-investigating glass transition at the microscopic scale, revealing that glass transition includes phenomena similar to second-order phase transition. They are characterized by microscopic collective polymer motion and discontinuous changes in temperature dependent relaxation times, later of which is similar to critical slowing down, within a temperature window that includes the polymer calorimetric glass transition temperature. Considering that collective motion and critical slowing down are accompaniments to critical phenomena, second-order phase transition behavior was identified in polymer glass transition.</p>


2020 ◽  
Author(s):  
Mitsuru Ishikawa ◽  
Taihei Takahashi ◽  
Yu-ichiro Hayashi ◽  
Maya Akashi ◽  
Takayuki Uwada

Glass transition was primarily considered to be not phase transition; instead, regarded as pseudo secondorder phase transition due to its similarity to the ordinary second-order phase transition. Recent single-molecule spectroscopy developments have prompted re-investigating glass transition at the microscopic scale, confirming that the initial classification is correct and revealing that glass transition includes phenomena similar to second-order phase transition. They are characterized by microscopic collective polymer motion and discontinuous changes in temperature dependent relaxation times within a temperature window that includes the polymer calorimetric glass transition temperature. Generally, atom or molecule collective motion and discontinuous changes in physical quantities including relaxation times characterize critical phenomena associated with second-order phase transitions near specific temperatures. Thus, second-order phase transition phenomena are involved in polymer glass transition.


2020 ◽  
Author(s):  
Mitsuru Ishikawa ◽  
Taihei Takahashi ◽  
Yu-ichiro Hayashi ◽  
Maya Akashi ◽  
Takayuki Uwada

Glass transition was primarily considered to be not phase transition; instead, regarded as pseudo secondorder phase transition due to its similarity to the ordinary second-order phase transition. Recent single-molecule spectroscopy developments have prompted re-investigating glass transition at the microscopic scale, confirming that the initial classification is correct and revealing that glass transition includes phenomena similar to second-order phase transition. They are characterized by microscopic collective polymer motion and discontinuous changes in temperature dependent relaxation times within a temperature window that includes the polymer calorimetric glass transition temperature. Generally, atom or molecule collective motion and discontinuous changes in physical quantities including relaxation times characterize critical phenomena associated with second-order phase transitions near specific temperatures. Thus, second-order phase transition phenomena are involved in polymer glass transition.


2021 ◽  
Author(s):  
Mitsuru Ishikawa ◽  
Taihei Takahashi ◽  
Yu-ichiro Hayashi ◽  
Maya Akashi ◽  
Takayuki Uwada

Glass transition has similarity to the second-order phase transition in temperature dependent changes in entropy, non-Arrhenius viscosity, and heat capacity of glass forming materials. However, it has primarily been considered to be not phase transition. Recent single-molecule spectroscopy developments prompted re-investigating glass transition at the nanometer scale probing resolution, showing that glass transition includes phenomena similar to the second-order phase transition. They are characterized by microscopic collective polymer motion and discontinuous changes in temperature dependent relaxation times, the latter of which resembles the critical slowing down of second-order phase transitions, within a temperature window above the polymer calorimetric glass transition temperature. Simultaneous collective motion and critical slowing down occurrences disclose that the second-order phase transition hides behind polymer glass transition.


2020 ◽  
Author(s):  
Mitsuru Ishikawa ◽  
Taihei Takahashi ◽  
Yu-ichiro Hayashi ◽  
Maya Akashi ◽  
Takayuki Uwada

Glass transition was primarily considered to be not phase transition; instead, regarded as pseudo secondorder phase transition due to its similarity to the ordinary second-order phase transition. Recent single-molecule spectroscopy developments have prompted re-investigating glass transition at the microscopic scale, confirming that the initial classification is correct and revealing that glass transition includes phenomena similar to second-order phase transition. They are characterized by microscopic collective polymer motion and discontinuous changes in temperature dependent relaxation times within a temperature window that includes the polymer calorimetric glass transition temperature. Generally, atom or molecule collective motion and discontinuous changes in physical quantities including relaxation times characterize critical phenomena associated with second-order phase transitions near specific temperatures. Thus, second-order phase transition phenomena are involved in polymer glass transition.


Physica B+C ◽  
1986 ◽  
Vol 143 (1-3) ◽  
pp. 261-263 ◽  
Author(s):  
Toshiaki Iwazumi ◽  
Mitsuru Izumi ◽  
Fumio Sasaki ◽  
Ryozo Yoshizaki ◽  
Etsuyuki Matsuura

Sign in / Sign up

Export Citation Format

Share Document