scholarly journals Efficient Dynamic Computational Strategy for Heterogeneous Catalysis Based on Neural Network Potential Energy Surface: A Case Study of Temperature-Dependent Thermodynamics and Kinetics for the Chemisorbed on-surface CO

Author(s):  
Jun Chen ◽  
Tan Jin ◽  
Tonghao Shen ◽  
Mingjun Yang ◽  
Zhe-Ning Chen

As a favorable alternative and complement of experimental techniques, computational tools on top of ab initio calculations have played an indispensable role in revealing the molecular details, thermodynamics and kinetics in catalytic reactions. The static computational strategy, which recovers the reaction thermodynamics and kinetics based on the calculations of a few stationary geometries at zero temperature and some ideal statistic mechanics models, is the most popular approach in theoretical catalysis due to its simplicity. In comparison, the ab initio molecular dynamics (AIMD) is a well-tested approach to provide more precise descriptions of catalytic processes, however, experiencing a significantly expensive computational cost in the direct ab initio calculation of potential energy and gradients. Here we proposed a highly efficient dynamic computational strategy for the calculation of thermodynamic and kinetic properties in heterogeneous catalysis on the basis of neural network potential energy surface (NN PES) and MD simulations. Taking CO adsorbate on Ru(0001) surface as the illustrative model catalytic system, we demonstrated that our NN-PES-based MD simulations can efficiently generate the reliable smooth two-dimensional potential-of-mean-force (2-D PMF) surfaces in a wide range of temperatures (from 300 to 900 K), and thus temperature-dependent thermodynamic properties can be obtained in a comprehensive investigation on the whole PMF surface rather than a rough estimation using ideal models based on a few optimized geometries. Moreover, MD simulations offer an effective way to describe the surface kinetics such as the CO adsorbate on-surface movement, which goes beyond the most popular static estimation based on calculated free energy barrier and transition state theory (TST). By comparing the results obtained in the dynamic and static approaches, we further revealed that the dynamic strategy significantly improves the predictions of both thermodynamic and kinetic properties as compared to the popular ideal statistic mechanics approaches such as harmonic analysis and TST. It is expected that this accurate yet efficient dynamic strategy can be a powerful tool in understanding reaction mechanisms and reactivity of a catalytic surface system, and further guides the rational design of heterogeneous catalysts.

Author(s):  
Xiaoren Zhang ◽  
Jun Chen ◽  
Xin Xu ◽  
Shu Liu ◽  
Dong H. Zhang

A global potential energy surface for the F + H2O ↔ HF + OH reaction has been constructed using the neural networks method based on ~24,000 ab initio energies calculated...


2020 ◽  
Author(s):  
Shi Jun Ang ◽  
Wujie Wang ◽  
Daniel Schwalbe-Koda ◽  
Simon Axelrod ◽  
Rafael Gomez-Bombarelli

<div>Modeling dynamical effects in chemical reactions, such as post-transition state bifurcation, requires <i>ab initio</i> molecular dynamics simulations due to the breakdown of simpler static models like transition state theory. However, these simulations tend to be restricted to lower-accuracy electronic structure methods and scarce sampling because of their high computational cost. Here, we report the use of statistical learning to accelerate reactive molecular dynamics simulations by combining high-throughput ab initio calculations, graph-convolution interatomic potentials and active learning. This pipeline was demonstrated on an ambimodal trispericyclic reaction involving 8,8-dicyanoheptafulvene and 6,6-dimethylfulvene. With a dataset size of approximately</div><div>31,000 M062X/def2-SVP quantum mechanical calculations, the computational cost of exploring the reactive potential energy surface was reduced by an order of magnitude. Thousands of virtually costless picosecond-long reactive trajectories suggest that post-transition state bifurcation plays a minor role for the reaction in vacuum. Furthermore, a transfer-learning strategy effectively upgraded the potential energy surface to higher</div><div>levels of theory ((SMD-)M06-2X/def2-TZVPD in vacuum and three other solvents, as well as the more accurate DLPNO-DSD-PBEP86 D3BJ/def2-TZVPD) using about 10% additional calculations for each surface. Since the larger basis set and the dynamic correlation capture intramolecular non-covalent interactions more accurately, they uncover longer lifetimes for the charge-separated intermediate on the more accurate potential energy surfaces. The character of the intermediate switches from entropic to thermodynamic upon including implicit solvation effects, with lifetimes increasing with solvent polarity. Analysis of 2,000 reactive trajectories on the chloroform PES shows a qualitative agreement with the experimentally-reported periselectivity for this reaction. This overall approach is broadly applicable and opens a door to the study of dynamical effects in larger, previously-intractable reactive systems.</div>


2020 ◽  
Vol 494 (4) ◽  
pp. 5675-5681 ◽  
Author(s):  
Sanchit Chhabra ◽  
T J Dhilip Kumar

ABSTRACT Molecular ions play an important role in the astrochemistry of interstellar and circumstellar media. C3H+ has been identified in the interstellar medium recently. A new potential energy surface of the C3H+–He van der Waals complex is computed using the ab initio explicitly correlated coupled cluster with the single, double and perturbative triple excitation [CCSD(T)-F12] method and the augmented correlation consistent polarized valence triple zeta (aug-cc-pVTZ) basis set. The potential presents a well of 174.6 cm−1 in linear geometry towards the H end. Calculations of pure rotational excitation cross-sections of C3H+ by He are carried out using the exact quantum mechanical close-coupling approach. Cross-sections for transitions among the rotational levels of C3H+ are computed for energies up to 600 cm−1. The cross-sections are used to obtain the collisional rate coefficients for temperatures T ≤ 100 K. Along with laboratory experiments, the results obtained in this work may be very useful for astrophysical applications to understand hydrocarbon chemistry.


Sign in / Sign up

Export Citation Format

Share Document