scholarly journals Modal and Stress Analysis of Cellular Structures Produced with Additive Manufacturing by Finite Element Analysis (FEA)

2018 ◽  
Vol 1 (1) ◽  
pp. 263-272
Author(s):  
Bekir Yalçın ◽  
Berkay Ergene ◽  
Uçan Karakılınç

Cellular structures such as regular/irregular honeycombs and re-entrants are known as lighter, high level flexibility and more efficient materials; these cellular structures have been mainly designed with topology optimization and obtained with new additive manufacturing methods for aircraft industry, automotive, medical, sports and leisure sectors. For this aim, the effect of cellular structures such as the honeycomb and re-entrant on vibration and stress-strain behaviors were determined under compression and vibration condition by finite elements analyses (FEA). In FEA, the re-entrant and honeycomb structures were modeled firstly and then the stress and displacement values for each structure were obtained. Secondly, vibration behaviors of these foam structures were estimated under determined boundary conditions. In conclusion, the effect of topology in foam structures on vibration and mechanical behaviour were exhibited in FEA results. The obtained stress results of FEA show that all stresses (?x, ?y, ?vm, ?xy) are lower on honeycomb structure than reentrant structure. Besides, natural frequency values (?1, ?2, ?3) and appearance of each structure were observed by using FEA.

2019 ◽  
Vol 5 (9) ◽  
pp. eaaw1937 ◽  
Author(s):  
Wen Chen ◽  
Seth Watts ◽  
Julie A. Jackson ◽  
William L. Smith ◽  
Daniel A. Tortorelli ◽  
...  

Materials with a stochastic microstructure, like foams, typically exhibit low mechanical stiffness, whereas lattices with a designed microarchitecture often show notably improved stiffness. These periodic architected materials have previously been designed by rule, using the Maxwell criterion to ensure that their deformation is dominated by the stretching of their struts. Classical designs following this rule tend to be anisotropic, with stiffness depending on the load orientation, but recently, isotropic designs have been reported by superimposing complementary anisotropic lattices. We have designed stiff isotropic lattices de novo with topology optimization, an approach based on continuum finite element analysis. Here, we present results of experiments on these lattices, fabricated by additive manufacturing, that validate predictions of their performance and demonstrate that they are as efficient as those designed by rule, despite appearing to violate the Maxwell criterion. These findings highlight the enhanced potential of topology optimization to design materials with unprecedented properties.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zheng ◽  
Yi Cai ◽  
Kelun Tang

Purpose The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine. Design/methodology/approach The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization. Findings After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased. Originality/value This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.


Sign in / Sign up

Export Citation Format

Share Document