scholarly journals Multiplexing of theta-nested gamma oscillations and grid firing fields in an attractor network model of layer II of the medial entorhinal cortex

Author(s):  
Nolan Matthew
2019 ◽  
Vol 15 ◽  
pp. P598-P598
Author(s):  
Heechul Jun ◽  
Shogo Soma ◽  
Ananya Dasgupta ◽  
Kei Igarashi

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Louis Kang ◽  
Vijay Balasubramanian

Grid cells in the medial entorhinal cortex (MEC) respond when an animal occupies a periodic lattice of ‘grid fields’ in the environment. The grids are organized in modules with spatial periods, or scales, clustered around discrete values separated on average by ratios in the range 1.4–1.7. We propose a mechanism that produces this modular structure through dynamical self-organization in the MEC. In attractor network models of grid formation, the grid scale of a single module is set by the distance of recurrent inhibition between neurons. We show that the MEC forms a hierarchy of discrete modules if a smooth increase in inhibition distance along its dorso-ventral axis is accompanied by excitatory interactions along this axis. Moreover, constant scale ratios between successive modules arise through geometric relationships between triangular grids and have values that fall within the observed range. We discuss how interactions required by our model might be tested experimentally.


1999 ◽  
Vol 82 (5) ◽  
pp. 2441-2450 ◽  
Author(s):  
Solange van der Linden ◽  
Ferruccio Panzica ◽  
Marco de Curtis

Fast oscillations at 25–80 Hz (gamma activity) have been proposed to play a role in attention-related mechanisms and synaptic plasticity in cortical structures. Recently, it has been demonstrated that the preservation of the entorhinal cortex is necessary to maintain gamma oscillations in the hippocampus. Because gamma activity can be reproduced in vitro by cholinergic activation, this study examined the characteristics of gamma oscillations induced by arterial perfusion or local intracortical injections of carbachol in the entorhinal cortex of the in vitro isolated guinea pig brain preparation. Shortly after carbachol administration, fast oscillatory activity at 25.2–28.2 Hz was observed in the medial but not in the lateral entorhinal cortex. Such activity was transiently associated with oscillations in the theta range that showed a variable pattern of distribution in the entorhinal cortex. No oscillatory activity was observed when carbachol was injected in the lateral entorhinal cortex. Gamma activity in the medial entorhinal cortex showed a phase reversal at 200–400 μm, had maximal amplitude at 400–500 μm depth, and was abolished by arterial perfusion of atropine (5 μM). Local carbachol application in the medial entorhinal cortex induced gamma oscillations in the hippocampus, whereas no oscillations were observed in the amygdala and in the piriform, periamygdaloid, and perirhinal cortices ipsilateral and contralateral to the carbachol injection. Hippocampal oscillations had higher frequency than the gamma activity recorded in the entorhinal cortex, suggesting the presence of independent generators in the two structures. The selective ability of the medial but not the lateral entorhinal cortex to generate gamma activity in response to cholinergic activation suggests a differential mode of signal processing in entorhinal cortex subregions.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Olga Kornienko ◽  
Patrick Latuske ◽  
Mathis Bassler ◽  
Laura Kohler ◽  
Kevin Allen

Computational models postulate that head-direction (HD) cells are part of an attractor network integrating head turns. This network requires inputs from visual landmarks to anchor the HD signal to the external world. We investigated whether information about HD and visual landmarks is integrated in the medial entorhinal cortex and parasubiculum, resulting in neurons expressing a conjunctive code for HD and visual landmarks. We found that parahippocampal HD cells could be divided into two classes based on their theta-rhythmic activity: non-rhythmic and theta-rhythmic HD cells. Manipulations of the visual landmarks caused tuning curve alterations in most HD cells, with the largest visually driven changes observed in non-rhythmic HD cells. Importantly, the tuning modifications of non-rhythmic HD cells were often non-coherent across cells, refuting the notion that attractor-like dynamics control non-rhythmic HD cells. These findings reveal a new population of non-rhythmic HD cells whose malleable organization is controlled by visual landmarks.


2018 ◽  
Author(s):  
Louis Kang ◽  
Vijay Balasubramanian

Grid cells in the medial entorhinal cortex (MEC) respond when an animal occupies a periodic lattice of “grid fields” in the environment. The grids are organized in modules with spatial periods, or scales, clustered around discrete values separated by ratios in the range 1.2–2.0. We propose a mechanism that produces this modular structure through dynamical self-organization in the MEC. In attractor network models of grid formation, the grid scale of a single module is set by the distance of recurrent inhibition between neurons. We show that the MEC forms a hierarchy of discrete modules if a smooth increase in inhibition distance along its dorso-ventral axis is accompanied by excitatory interactions along this axis. Moreover, constant scale ratios between successive modules arise through geometric relationships between triangular grids and have values that fall within the observed range. We discuss how interactions required by our model might be tested experimentally.


2011 ◽  
Vol 23 (10) ◽  
pp. 3008-3020 ◽  
Author(s):  
Mikael Lundqvist ◽  
Pawel Herman ◽  
Anders Lansner

Changes in oscillatory brain activity are strongly correlated with performance in cognitive tasks and modulations in specific frequency bands are associated with working memory tasks. Mesoscale network models allow the study of oscillations as an emergent feature of neuronal activity. Here we extend a previously developed attractor network model, shown to faithfully reproduce single-cell activity during retention and memory recall, with synaptic augmentation. This enables the network to function as a multi-item working memory by cyclic reactivation of up to six items. The reactivation happens at theta frequency, consistently with recent experimental findings, with increasing theta power for each additional item loaded in the network's memory. Furthermore, each memory reactivation is associated with gamma oscillations. Thus, single-cell spike trains as well as gamma oscillations in local groups are nested in the theta cycle. The network also exhibits an idling rhythm in the alpha/beta band associated with a noncoding global attractor. Put together, the resulting effect is increasing theta and gamma power and decreasing alpha/beta power with growing working memory load, rendering the network mechanisms involved a plausible explanation for this often reported behavior.


Author(s):  
Tomoaki Nakazono ◽  
Travis N. Lam ◽  
Ayushi Y. Patel ◽  
Masashi Kitazawa ◽  
Takashi Saito ◽  
...  

2017 ◽  
Vol 28 (7) ◽  
pp. 2439-2457 ◽  
Author(s):  
Quanhui Chen ◽  
Fenlan Luo ◽  
Faguo Yue ◽  
Jianxia Xia ◽  
Qin Xiao ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Caitlin S. Mallory ◽  
Kiah Hardcastle ◽  
Malcolm G. Campbell ◽  
Alexander Attinger ◽  
Isabel I. C. Low ◽  
...  

AbstractNeural circuits generate representations of the external world from multiple information streams. The navigation system provides an exceptional lens through which we may gain insights about how such computations are implemented. Neural circuits in the medial temporal lobe construct a map-like representation of space that supports navigation. This computation integrates multiple sensory cues, and, in addition, is thought to require cues related to the individual’s movement through the environment. Here, we identify multiple self-motion signals, related to the position and velocity of the head and eyes, encoded by neurons in a key node of the navigation circuitry of mice, the medial entorhinal cortex (MEC). The representation of these signals is highly integrated with other cues in individual neurons. Such information could be used to compute the allocentric location of landmarks from visual cues and to generate internal representations of space.


Sign in / Sign up

Export Citation Format

Share Document