scholarly journals Highly Adhesive Antibacterial Bioactive Composite Hydrogels With Controllable Flexibility and Swelling as Wound Dressing for Full-Thickness Skin Healing

Author(s):  
Guanhua Lan ◽  
Suping Zhu ◽  
Dong Chen ◽  
Hua Zhang ◽  
Lijin Zou ◽  
...  

Polyzwitterionic hydrogels as skin wound dressings have been extensively studied owing to their superior antibacterial properties and skin adhesiveness, but their practical applications still suffer from a low adhesion strength and a high swelling ratio, which hinder the application of hydrogel for cutaneous healing. Here, we developed a novel biocompatible poly[2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (PolySBMA) composite hydrogel with high stretchability, low swelling, strong skin adhesiveness, and antibacterial effect for enhancing wound healing. Naturally rigid polymers including quaternized chitosan methacrylate (QCSMA) and gelatin methacrylate (GelMA) are used as bioactive cross-linkers to endow PolySBMA/QCSMA/GelMA (SQG) hydrogel with a low swelling ratio and high bioactivity. The optimized hydrogel has excellent mechanical flexibility, with the ultimate tensile strength, tensile strain, modulus, and toughness of up to 344.5 kPa, 364%, 14.7 kPa, and 33.4 kJ m−3, respectively. The adhesiveness of the hydrogel to the skin tissue is as high as 38.2 kPa, which is critical for stopping the bleeding from the wound. The synergistic contributions from the PolySBMA and QCSMA endow hydrogel with good antibacterial properties against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Moreover, the natural polymer cross-linked polyzwitterionic hydrogel shows good cell activity, hemocompatibility, and histocompatibility. The in vivo full-thickness skin defect model demonstrates that the SQG hydrogel efficiently improves the granulation tissue formation and collagen deposition. In summary, such superiorly skin-adhesive antibacterial biocompatible hydrogel with controllable flexibility and swelling holds great promise as wound dressings for acute wounds.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Biao Sun ◽  
Shilei Guo ◽  
Fei Xu ◽  
Bin Wang ◽  
Xiujuan Liu ◽  
...  

In recent years, the bioactive factors were utilized in exercise and athletic skin injuries. In this research, the concentrated conditioned medium of hypoxia-preconditioned adipose mesenchymal stem cells, which is rich in bioactive factor, is applied in full-thickness skin defect model to evaluate the therapeutic efficacy. Adipose mesenchymal stem cells were harvested from the abdominal subcutaneous adipose tissues. The surface markers and the potential of differentiation were analyzed. The conditioned medium of hypoxia-preconditioned stem cells was collected and freeze-dried and then applied on the rat full-thickness skin defect model, and the healing time of each group was recorded. Haematoxylin and eosin staining of skin was assessed by microscope. The characteristics of adipose mesenchymal stem cells were similar to those of other mesenchymal stem cells. The concentration of protein in freeze-dried conditioned medium in 1 mL water was about 15 times higher than in the normal condition medium. In vivo, the concentrated hypoxia-preconditioned conditioned medium can reduce the wound size and accelerate the skin wound healing. The concentrated hypoxia-preconditioned adipose mesenchymal stem cell-conditioned medium has great effect on rat model of wound healing, and it would be an ideal agent for wound care in clinical application.


Biomaterials ◽  
1996 ◽  
Vol 17 (10) ◽  
pp. 989-994 ◽  
Author(s):  
Risako Matsui ◽  
Ken-ichi Osaki ◽  
Jun Konishi ◽  
Kazuhito Ikegami ◽  
Mikio Koide

2010 ◽  
Vol 2010 ◽  
pp. 1-3 ◽  
Author(s):  
A. D'Alessio ◽  
E. Piro ◽  
M. Brugnoni ◽  
L. Abati

We report a four-year-old boy with a nevus covering all the plantar side of his second finger on the left foot. He was also affected by congenital phimosis. Surgical excision of the nevus was indicated, but the skin defect would have been too large to be directly closed. The foreskin was taken as a full-thickness skin graft to cover the cutaneous defect of the finger. The graft intake was favourable and provided a functional repair with good aesthetic characteristic.


2010 ◽  
Vol 59 (3) ◽  
pp. 541-544
Author(s):  
Katsuro Fukuyama ◽  
Masaaki Imabayashi ◽  
Hirohumi Ohsako ◽  
Yuichiro Yazaki ◽  
Takashi Murayama ◽  
...  

2020 ◽  
Author(s):  
Shuang Lin ◽  
Xiaoning He ◽  
Yuanjia He

Abstract Background The repair of large-scale full-thickness skin defects represents a challenging obstacle in skin tissue engineering. To address the most important problem in skin defect repair, namely insufficient blood supply, this study aimed to find a method that could promote the formation of vascularized skin tissue. Method The phenotypes of ASCs and EPCs were identified respectively, and ASCs/EPCs were co-cultured in vitro to detect the expression of dermal and angiogenic genes. Furthermore, the co-culture system combined with dermal extracellular matrix hydrogel was used to repair the full-scale skin defects in rats.Result The co-culture of ASCs/EPCs could increase skin and angiogenesis-related gene expression in vitro. The results of in vivo animal experiments demonstrated that the ASCs/EPCs group could significantly accelerate the repair of skin defects by promoting the regeneration of vascularized skin.Conclusion It is feasible to replace traditional single seed cells with ASC/EPC co-culture system for vascularized skin regeneration. This system could ultimately enable clinicians to better repair the full-thickness skin defects and avoid donor site morbidity.


Sign in / Sign up

Export Citation Format

Share Document