scholarly journals Optimal Seismic Design of Stiffness and Gap of Hysteretic-Viscous Hybrid Damper System in Nonlinear Building Frames for Simultaneous Reduction of Interstory Drift and Acceleration

2021 ◽  
Vol 7 ◽  
Author(s):  
Soichiro Ishida ◽  
Izuru Takewaki

The viscous-hysteretic hybrid (HVH) damper system recently introduced by one of the authors has a clear property that, when the hysteretic dampers with gap mechanism become active (stiffness element starts working), the acceleration of building frames with this damper system as a stopper attains large values in spite of the advantageous feature to prevent excessive deformation. It is therefore desired that both the maximum interstory drift and the maximum acceleration exhibit an acceptable value with appropriate compromise. The double impulse as a simplified version of one-cycle sine wave as a representative of the main part of near-fault ground motions can simulate the maximum interstory drifts properly. However, it cannot simulate the maximum accelerations due to its impulsive nature. In this case, the sine wave corresponding to the double impulse can play an important role in the reliable simulation of the maximum accelerations. Even in such circumstance, the analysis using the double impulse is important because it enables to obtain the critical timing of the input, i.e. the nonlinear resonant frequency of the sine wave without repetition. The investigations on the criticality of the sine wave corresponding to the critical double impulse show that the critical timing of the double impulse leads to the nonlinear resonant frequency of the sine wave in view of the maximum interstory drift, the maximum top acceleration and the maximum relative acceleration for the constant input acceleration and the constant input velocity except for some cases. It is demonstrated finally that the index in terms of the maximum interstory drift and the maximum acceleration can be introduced as an appropriate parameter for deriving the optimally compromised gap quantity of hysteretic dampers with gap mechanism for various input velocity levels and various hysteretic damper stiffness ratios.

Author(s):  
Frank Fan Wang

It is a challenge to correlate different dynamic loads. Often, attempts are made to compare the peak acceleration of sine wave to the root mean square (RMS) acceleration of random vibration and shock. However, peak sine acceleration is the maximum acceleration at one frequency. Random RMS is the square root of the area under a spectral density curve. These are not equivalent. This paper is to discuss a mathematical method to compare different kinds of dynamic damage at the resonant point of the related electronic equipment. The electronic equipment will vibrate at its resonance point when there are dynamic excitations. The alternative excitation at the resonant frequency causes the most damage. This paper uses this theory to develop a method to correlate different dynamic load conditions for electronic equipment. The theory is that if one kind of dynamic load causes the same levels of damaging effects as the other, the levels of vibration can then be related.


1996 ◽  
Vol 76 (2) ◽  
pp. 683-697 ◽  
Author(s):  
B. Hutcheon ◽  
R. M. Miura ◽  
E. Puil

1. Using whole cell recording techniques, we studied subthreshold and suprathreshold voltage responses to oscillatory current inputs in neurons from the sensorimotor cortex of juvenile rats. 2. Based on firing patterns, neurons were classified as regular spiking (RS), intrinsic bursting (IB), and fast spiking (FS). The subthreshold voltage-current relationships of RS and IB neurons were rectifying whereas FS neurons were almost ohmic near rest. 3. Frequency response curves (FRCs) for neurons were determined by analyzing the frequency content of inputs and outputs. The FRCs of most neurons were voltage dependent at frequencies below, but not above, 20 Hz. Approximately 60% of RS and IB neurons had a membrane resonance at their resting potential. Resonant frequencies were between 0.7 and 2.5 Hz (24-26 degrees C) near -70 mV and usually increased with hyperpolarization and decreased with depolarization. The remaining RS and IB neurons and all FS neurons were nonresonant. 4. Resonant neurons near rest had a selective coupling between oscillatory inputs and firing. These neurons selectively fired action potentials when the frequency of the swept-sine-wave (ZAP) current input was near the resonant frequency. However, when these neurons were depolarized to -60 mV, spike firing was associated with many input frequencies rather than selectively near the resonant frequency. 5. We examined three subthreshold currents that could cause low-frequency resonance: IH, a slow, hyperpolarization-activated cation current that was blocked by external Cs+ but not Ba2+; IIR, an instantaneously activating, inwardly rectifying K+ current that was blocked by both Cs+ and Ba2+; and INaP, an quickly activating, inwardly rectifying persistent Na+ current that was blocked by tetrodotoxin (TTX). Voltage-clamp experiments defined the relative steady state activation ranges of these currents. IIR (activates below -80 mV) and INaP (activates above -65 mV) are unlikely to interact with each other because their activation ranges never overlap. However, both currents may interact with IH, which activated variably at potentials between -50 and -90 mV in different neurons. 6. We found that IH produces subthreshold response. Consistent with this, subthreshold resonance was blocked by external Cs+ but not Ba2+ or TTX. Application of Ba2+ enlarged FRCs and resonance at potentials below -80 mV, indicating that IK,ir normally attenuates resonance. Application of TTX greatly diminished resonance at potentials more depolarized than -65 mV, indicating that INaP normally amplifies resonance at these potentials. 7. The ZAP current input may be viewed as a model of oscillatory currents that arise in neocortical neurons during synchronized activity in the brain. We propose that the frequency selectivity endowed on neurons by IH may contribute to their participation in synchronized firing. The voltage dependence of the frequency-selective coupling between oscillatory inputs and spikes may indicate a novel mechanism for controlling the extent of low-frequency synchronized activity in the neocortex.


2016 ◽  
Vol 142 (6) ◽  
pp. 06016001 ◽  
Author(s):  
Mohammad Nouroz Islam ◽  
Shahin Zareie ◽  
M. Shahria Alam ◽  
Rudolf J. Seethaler

2009 ◽  
Author(s):  
Navin Viswanathan ◽  
James S. Magnuson ◽  
Carol A. Fowler
Keyword(s):  

Currently, prefabricated reinforced concrete structures are widely used for the construction of buildings of various functional purposes. In this regard, has been developed SP 356.1325800.2017 "Frame Reinforced Concrete Prefabricated Structures of Multi-Storey Buildings. Design Rules", which establishes requirements for the calculation and design of precast reinforced concrete structures of frame buildings of heavy, fine-grained and lightweight structural concrete for buildings with a height of not more than 75 m. The structure of the set of rules consists of eight sections and one annex. The document reviewed covers the design of multi-story framed beam structural systems, the elements of which are connected in a spatial system with rigid (partially compliant) or hinged joints and concreting of the joints between the surfaces of the abutting precast elements. The classification of structural schemes of building frames, which according to the method of accommodation of horizontal loads are divided into bracing, rigid frame bracing and framework, is presented. The list of structural elements, such as foundations, columns, crossbars, ribbed and hollow floor slabs and coatings, stiffness elements and external enclosing structures is given; detailed instructions for their design are provided. The scope of the developed set of rules includes all natural and climatic zones of the Russian Federation, except seismic areas with 7 or more points, as well as permafrost zones.


Author(s):  
Enyu Ma ◽  
Hui Zhao ◽  
Shuo Chen ◽  
Shuai Wang ◽  
Xin Huo ◽  
...  
Keyword(s):  

2005 ◽  
Vol 2 (2) ◽  
pp. 79
Author(s):  
Mohd Khairul Mohd Salleh ◽  
Mohamad Syukri Suhaili ◽  
Zuhani Ismail ◽  
Zaiki Awang

A simple design of a metallic circular cross-sectional air-filled cavity is presented. Two probes of varied lengths are used to excite TE112-mode wave into the cavity to give a resonant frequency of 5.86 GHz. The experiments show that the resonant frequency of the cavity resonator decreases as the lengths of the probes are increased. The shortest probe in the range of study gives the closest resonant frequency to the one desired.


Sign in / Sign up

Export Citation Format

Share Document