neocortical neurons
Recently Published Documents


TOTAL DOCUMENTS

482
(FIVE YEARS 37)

H-INDEX

73
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Bruna Cunha Zaidan ◽  
Ingrid Carolina da Silva Cardoso ◽  
Brunno Machado de Campos ◽  
Luciana Ramalho Pimentel da Silva ◽  
Vanessa C. Mendes Coelho ◽  
...  

Hippocampal sclerosis (HS) is a common cause of pharmacoresistant focal epilepsy. Here, we (1) performed a histological approach to the anterior temporal pole of patients with HS to evaluate cortical and white matter (WM) cell populations, alteration of myelin integrity and markers of neuronal activity, and (2) correlated microscopic data with magnetic resonance imaging (MRI) findings. Our aim was to contribute with the understanding of neuroimaging and pathophysiological mechanisms of temporal lobe epilepsy (TLE) associated with HS. We examined MRIs and surgical specimens from the anterior temporal pole from TLE-HS patients (n = 9) and compared them with 10 autopsy controls. MRIs from healthy volunteers (n = 13) were used as neuroimaging controls. Histological techniques were performed to assess oligodendrocytes, heterotopic neurons, cellular proliferative index, and myeloarchitecture integrity of the WM, as well as markers of acute (c-fos) and chronic (ΔFosB) activities of neocortical neurons. Microscopic data were compared with neuroimaging findings, including T2-weighted/FLAIR MRI temporopolar blurring and values of fractional anisotropy (FA) from diffusion-weighed imaging (DWI). We found a significant increase in WM oligodendrocyte number, both in hematoxylin and eosin, and in Olig2-stained sections. The frequencies of oligodendrocytes in perivascular spaces and around heterotopic neurons were significantly higher in patients with TLE–HS compared with controls. The percentage of 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase; a marker of myeloarchitecture integrity) immunopositive area in the WM was significantly higher in TLE-HS, as well as the numbers of c-fos- and ΔFosB-immunostained neocortical neurons. Additionally, we demonstrated a decrease in axonal bundle integrity on neuroimaging, with a significant reduction in the FA in the anterior temporal pole. No differences were detected between individuals with and without temporopolar blurring on visual MRI analysis, considering the number of oligodendroglial cells and percentage of WM CNPase-positive areas. Also, there was no relationship between T2 relaxometry and oligodendrocyte count. In conclusion, our histopathological data support the following: (1) the hypothesis that repetitive neocortical neuronal activity could induce changes in the WM cellular constitution and myelin remodeling in the anterior temporal pole from patients with TLE-HS, (2) that oligodendroglial hyperplasia is not related to temporal blurring or T2 signal intensity on MRI, and (3) that reduced FA is a marker of increase in Olig2-immunopositive cells in superficial temporopolar WM from patients with TLE-HS.


2021 ◽  
Vol 14 (6) ◽  
pp. 1612
Author(s):  
Adrià Galan-Gadea ◽  
Ricardo Salvador ◽  
Giulio Ruffini

2021 ◽  
Author(s):  
Gina G Turrigiano ◽  
Chi-Hong Wu ◽  
Vedakumar Tatavarty ◽  
Pierre M Jean-Beltran ◽  
Andrea Guerrero ◽  
...  

Homeostatic synaptic plasticity requires widespread remodeling of synaptic signaling and scaffolding networks, but the role of posttranslational modifications in this process has not been systematically studied. Using deepscale, quantitative analysis of the phosphoproteome in mouse neocortical neurons, we found wide-spread and temporally complex changes during synaptic scaling up and down. We observed 424 bidirectionally modulated phosphosites that were strongly enriched for synapse-associated proteins, including S1539 in the ASD-associated synaptic scaffold protein Shank3. Using a parallel proteomic analysis performed on Shank3 isolated from rat neocortical neurons by immunoaffinity, we identified two sites that were hypo-phosphorylated during scaling up and hyper-phosphorylated during scaling down: one (rat S1615) that corresponded to S1539 in mouse, and a second highly conserved site, rat S1586. The phosphorylation status of these sites modified the synaptic localization of Shank3 during scaling protocols, and dephosphorylation of these sites via PP2A activity was essential for the maintenance of synaptic scaling up. Finally, phosphomimetic mutations at these sites prevented scaling up but not down, while phosphodeficient mutations prevented scaling down but not up. Thus, an activity-dependent switch between hypo- and hyperphosphorylation at S1586/ S1615 of Shank3 enables scaling up or down, respectively. Collectively our data show that activity-dependent phosphoproteome dynamics are important for the functional reconfiguration of synaptic scaffolds, and can bias synapses toward upward or downward homeostatic plasticity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Qian Zhang ◽  
Yi Zeng ◽  
Tielin Zhang ◽  
Taoyi Yang

Elucidating the multi-scale detailed differences between the human brain and other brains will help shed light on what makes us unique as a species. Computational models help link biochemical and anatomical properties to cognitive functions and predict key properties of the cortex. Here, we present a detailed human neocortex network, with all human neuron parameters derived from the newest Allen Brain human brain cell database. Compared with that of rodents, the human neural network maintains more complete and accurate information under the same graphic input. Unique membrane properties in human neocortical neurons enhance the human brain’s capacity for signal processing.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jacob A. Bahry ◽  
Karlie N. Fedder-Semmes ◽  
Michael P. Sceniak ◽  
Shasta L. Sabo

Mutations in GRIN2B, which encodes the GluN2B subunit of NMDA receptors, lead to autism spectrum disorders (ASD), but the pathophysiological mechanisms remain unclear. Recently, we showed that a GluN2B variant that is associated with severe ASD (GluN2B724t) impairs dendrite morphogenesis. To determine which aspects of dendrite growth are affected by GluN2B724t, we investigated the dynamics of dendrite growth and branching in rat neocortical neurons using time-lapse imaging. GluN2B724t expression shifted branch motility toward retraction and away from extension. GluN2B724t and wild-type neurons formed new branches at similar rates, but mutant neurons exhibited increased pruning of dendritic branches. The observed changes in dynamics resulted in nearly complete elimination of the net expansion of arbor size and complexity that is normally observed during this developmental period. These data demonstrate that ASD-associated mutant GluN2B interferes with dendrite morphogenesis by reducing rates of outgrowth while promoting retraction and subsequent pruning. Because mutant dendrites remain motile and capable of growth, it is possible that reducing pruning or promoting dendrite stabilization could overcome dendrite arbor defects associated with GRIN2B mutations.


2021 ◽  
Author(s):  
Alison A Chomiak ◽  
Clara C Lowe ◽  
Yan Guo ◽  
Dennis Mcdaniel ◽  
Hongna Pan ◽  
...  

The NDE1 gene encodes a scaffold protein essential for brain development. While biallelic NDE1 loss of function (LOF) causes microcephaly with profound mental retardation, NDE1 missense mutations and copy number variations are associated with multiple neuropsychiatric disorders. However, the etiology of the diverse phenotypes resulting from NDE1 aberrations remains elusive. Here we show Nde1 controls neurogenesis through heterochromatin compaction via histone H4K20 trimethylation. This mechanism patterns diverse chromatin landscapes and stabilizes constitutive heterochromatin of neocortical neurons. We show NDE1 undergoes dynamic liquid-liquid phase separation, partitioning to the nucleus and interacting with pericentromeric and centromeric satellite repeats. Nde1 LOF results in nuclear architecture aberrations, DNA double strand breaks, as well as instability and derepression of pericentromeric satellite repeats in neocortical neurons. These findings uncover a pivotal role of NDE1/Nde1 in establishing and maintaining neuronal heterochromatin. They suggest that heterochromatin impairments underlie a wide range of brain dysfunction.


2021 ◽  
Vol 15 ◽  
Author(s):  
Johanna Norrlid ◽  
Jonas M. D. Enander ◽  
Hannes Mogensen ◽  
Henrik Jörntell

The brain has a never-ending internal activity, whose spatiotemporal evolution interacts with external inputs to constrain their impact on brain activity and thereby how we perceive them. We used reproducible touch-related spatiotemporal sensory inputs and recorded intracellularly from rat (Sprague-Dawley, male) neocortical neurons to characterize this interaction. The synaptic responses, or the summed input of the networks connected to the neuron, varied greatly to repeated presentations of the same tactile input pattern delivered to the tip of digit 2. Surprisingly, however, these responses tended to sort into a set of specific time-evolving response types, unique for each neuron. Further, using a set of eight such tactile input patterns, we found each neuron to exhibit a set of specific response types for each input provided. Response types were not determined by the global cortical state, but instead likely depended on the time-varying state of the specific subnetworks connected to each neuron. The fact that some types of responses recurred indicates that the cortical network had a non-continuous landscape of solutions for these tactile inputs. Therefore, our data suggest that sensory inputs combine with the internal dynamics of the brain networks, thereby causing them to fall into one of the multiple possible perceptual attractor states. The neuron-specific instantiations of response types we observed suggest that the subnetworks connected to each neuron represent different components of those attractor states. Our results indicate that the impact of cortical internal states on external inputs is substantially more richly resolvable than previously shown.


2021 ◽  
Vol 22 (12) ◽  
pp. 6298
Author(s):  
Michaela K. Back ◽  
Sonia Ruggieri ◽  
Eric Jacobi ◽  
Jakob von Engelhardt

Onset and progression of Alzheimer’s disease (AD) pathophysiology differs between brain regions. The neocortex, for example, is a brain region that is affected very early during AD. NMDA receptors (NMDARs) are involved in mediating amyloid beta (Aβ) toxicity. NMDAR expression, on the other hand, can be affected by Aβ. We tested whether the high vulnerability of neocortical neurons for Aβ-toxicity may result from specific NMDAR expression profiles or from a particular regulation of NMDAR expression by Aβ. Electrophysiological analyses suggested that pyramidal cells of 6-months-old wildtype mice express mostly GluN1/GluN2A NMDARs. While synaptic NMDAR-mediated currents are unaltered in 5xFAD mice, extrasynaptic NMDARs seem to contain GluN1/GluN2A and GluN1/GluN2A/GluN2B. We used conditional GluN1 and GluN2B knockout mice to investigate whether NMDARs contribute to Aβ-toxicity. Spine number was decreased in pyramidal cells of 5xFAD mice and increased in neurons with 3-week virus-mediated Aβ-overexpression. NMDARs were required for both Aβ-mediated changes in spine number and functional synapses. Thus, our study gives novel insights into the Aβ-mediated regulation of NMDAR expression and the role of NMDARs in Aβ pathophysiology in the somatosensory cortex.


Sign in / Sign up

Export Citation Format

Share Document