scholarly journals Red-Shift (2-Hydroxyphenyl)-Benzothiazole Emission by Mimicking the Excited-State Intramolecular Proton Transfer Effect

2021 ◽  
Vol 9 ◽  
Author(s):  
Yong Ren ◽  
Lei Zhou ◽  
Xin Li

Novel strategies to optimize the photophysical properties of organic fluorophores are of great significance to the design of imaging probes to interrogate biology. While the 2-(2-hydroxyphenyl)-benzothiazole (HBT) fluorophore has attracted considerable attention in the field of fluorescence imaging, its short emission in the blue region and low quantum yield restrict its wide application. Herein, by mimicking the excited-state intramolecular proton transfer (ESIPT) effect, we designed a series of 2-(2-hydroxyphenyl)-benzothiazole (HBT) derivatives by complexing the heteroatoms therein with a boron atom to enhance the chance of the tautomerized keto-like resonance form. This strategy significantly red-shifted the emission wavelengths of HBT, greatly enhanced its quantum yields, and caused little effect on molecular size. Typically, compounds 12B and 13B were observed to emit in the near-infrared region, making them among the smallest organic structures with emission above 650 nm.

CrystEngComm ◽  
2021 ◽  
Vol 23 (38) ◽  
pp. 6769-6777
Author(s):  
Parthasarathy Gayathri ◽  
Karuppaiah Kanagajothi ◽  
Probal Nag ◽  
Neethu Anand ◽  
Vennapusa Sivaranjana Reddy ◽  
...  

Excited state intramolecular proton transfer (ESIPT) process-based organic fluorophores provide an opportunity to develop large Stokes-shifted multifunctional fluorescence systems for light emitting, chemosensing and bioimaging applications.


2020 ◽  
Author(s):  
Dominik Göbel ◽  
Daniel Duvinage ◽  
Tim Stauch ◽  
Boris Nachtsheim

Herein, we present minimalistic single-benzene, excited-state intramolecular proton transfer (ESIPT) based fluorophores as powerful solid state emitters. The very simple synthesis gave access to all four regioisomers of nitrile-substituted 2(oxazolinyl)phenols (MW = 216.1). In respect of their emission properties they can be divided into aggregation-induced emission enhancement (AIEE) luminophores (1-CN and 2-CN), dual state emission (DSE) emitters (3-CN) and aggregation-caused quenching (ACQ) fluorophores (4‐CN). Remarkably, with compound 1-CN we discovered a minimalistic ESIPT based fluorophore with extremely high quantum yield in the solid state ΦF = 87.3% at λem = 491 nm. Furthermore, quantum yields in solution were determined up to ΦF = 63.0%, combined with Stokes shifts up till 11.300 cm–1. Temperature dependent emission mapping, crystal structure analysis and time-dependent density functional theory (TDDFT) calculations gave deep insight into the origin of the emission properties.<br>


2016 ◽  
Vol 45 (1) ◽  
pp. 169-202 ◽  
Author(s):  
Vikas S. Padalkar ◽  
Shu Seki

The state-of-the-art of ESIPT-inspired solid state emitters and their photophysical properties and applications in recent 5 years were systematically reviewed.


Sign in / Sign up

Export Citation Format

Share Document