scholarly journals Fault Location with High Precision of Flexible DC Distribution System Using Wavelet Transform and Convolution Neural Network

2021 ◽  
Vol 9 ◽  
Author(s):  
Dafei Wang ◽  
Baohua Wang ◽  
Wenhui Zhang ◽  
Chi Zhang ◽  
Jiacheng Yu

Though flexible DC distribution system (FDCDS) is becoming a new hotspot in power systems lately because of the rapid development of power electronic devices and massive use of renewable energy, the failure to realize accurate fault location with high precision restricts its further application. Thus, a novel precise pole-to-ground fault location method of FDCDS based on wavelet transform (WT) and convolution neural network (CNN) is proposed in this paper for the limitation on the number of measuring points and high difficulty in extracting characteristics of FDCDS. The fault voltage signal is decomposed with multi-resolution by discrete wavelet transform (DWT), and then the transient energy function is constructed to select the frequency bands containing rich fault characteristics for signal reconstruction. The reconstructed signal forms two-dimensional time-frequency images through continuous wavelet transform (CWT), which are used as the input of CNN classifier after image enhancement to form the mapping relation between the fault feature and fault position using the powerful generalization ability of CNN, so as to complete fault location with high precision. The sample data on PSCAD/EMTDC verifies the accuracy and reliability of the proposed method, which can achieve fault location with positioning precision of 30 m. The proposed method overcomes the influence of the control strategy of the converter and the number of input capacitors of the bridge arm in the time-domain analysis, and still has strong robustness in the case that FDCDS is connected with many distributed generations (DGs) with output fluctuation. Furthermore, four other methods for fault location as comparisons are given to reflect the validity and anti-interference ability of proposed methods in various noises.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Zuoxun Wang ◽  
Liqiang Xu

The safety and stability of the power supply system are affected by some faults that often occur in power system. To solve this problem, a criterion algorithm based on the chaotic neural network (CNN) and a fault detection algorithm based on discrete wavelet transform (DWT) are proposed in this paper. MATLAB/Simulink is used to establish the system model to output fault signals and travelling wave signals. Db4 wavelet decomposes the travelling wave signals into detail signals and approximate signals, and these signals are combined with the two-terminal travelling wave location method to achieve fault location. And the wavelet detail coefficients are extracted to input to the proposed chaotic neural network. The results show that the criterion algorithm can effectively determine whether there are faults in the power system, the fault detection algorithm has the capabilities of locating the system faults accurately, and both algorithms are not affected by fault type, fault location, fault initial angle, and transition resistance.


2016 ◽  
Vol 28 (02) ◽  
pp. 1650010 ◽  
Author(s):  
Saliha Ould Slimane ◽  
Malika Kedir Talha ◽  
Zairi Hadjer ◽  
Slimane Mekaoui

The main aim of this paper is a contribution to the design of an Intelligent Diagnosis System for Cardiac anomalies detection in acquired ECG (Electrocardiogram) signals. To attain this goal, the authors have developed two approaches to extract the most relevant and significant parameters that can best classify ECGs into two classes namely, Normal and Abnormal from real Electrocardiogram signals. The first approach is a time method which consists in modeling ECGs using RBF (Radial Basis Function) neural network algorithm, whereas, the second approach is a frequency based method which relies on the DWT (Discrete Wavelet Transform) that projects the signal into a time-scale (time-frequency) plane. In both approaches, the resulting data are submitted to the same SVM (Support Machine Vector) Classifier. The results obtained have shown a good adjustment of relevant parameters for each approach and have revealed the most efficient combined processing-classification algorithm that has achieved classification rates up to 100 % allowing at a time a reduced number of parameters. This fact had considerably simplified the hardware for a real time implementation. Finally, the authors compared both approaches and have identified some implementation constraints, such as the sampling frequency for the frequency based approach and preprocessing and cutting for the time approach.


Author(s):  
Alireza Zabihi-Hesari ◽  
Saeed Ansari-Rad ◽  
Farzad A Shirazi ◽  
Moosa Ayati

This paper presents a condition monitoring and combustion fault detection technique for a 12-cylinder 588 kW trainset diesel engine based on vibration signature analysis using fast Fourier transform, discrete wavelet transform, and artificial neural network. Most of the conventional fault diagnosis techniques in diesel engines are mainly based on analyzing the difference of vibration signals amplitude in the time domain or frequency spectrum. Unfortunately, for complex engines, the time- or frequency-domain approaches do not provide appropriate features solely. In the present study, vibration signals are captured from both intake manifold and cylinder heads of the engine and were analyzed in time-, frequency-, and time–frequency domains. In addition, experimental data of a 12-cylinder 588 kW diesel engine (of a trainset) are captured and the proposed method is verified via these data. Results show that power spectra of vibration signals in the low-frequency range reliably distinguish between normal and faulty conditions. However, they cannot identify the fault location. Hence, a feature extraction method based on discrete wavelet transform and energy spectrum is proposed. The extracted features from discrete wavelet transform are used as inputs in a neural network for classification purposes according to the location of sensors and faults. The experimental results verified that vibration signals acquired from intake manifold have more potential in fault detection. In addition, the capacity of discrete wavelet transform and artificial neural network in detection and diagnosis of faulty cylinders subjected to the abnormal fuel injection was revealed in a complex diesel engine. Beside condition monitoring of the engine, a two-step fault detection method is proposed, which is more reliable than other one-step methods for complex engines. The average condition monitoring performance is from 93.89% up to 99.17%, based on fault location and sensor placement, and the minimum classification performance is 98.34%.


2018 ◽  
Vol 5 (1) ◽  
pp. 41-46
Author(s):  
Rosalina Rosalina ◽  
Hendra Jayanto

The aim of this paper is to get high accuracy of stock market forecasting in order to produce signals that will affect the decision making in the trading itself. Several experiments by using different methodologies have been performed to answer the stock market forecasting issues. A traditional linear model, like autoregressive integrated moving average (ARIMA) has been used, but the result is not satisfactory because it is not suitable for model financial series. Yet experts are likely observed another approach by using artificial neural networks. Artificial neural network (ANN) are found to be more effective in realizing the input-output mapping and could estimate any continuous function which given an arbitrarily desired accuracy. In details, in this paper will use maximal overlap discrete wavelet transform (MODWT) and graph theory to distinguish and determine between low and high frequencies, which in this case acted as fundamental and technical prediction of stock market trading. After processed dataset is formed, then we will advance to the next level of the training process to generate the final result that is the buy or sell signals given from information whether the stock price will go up or down.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 119
Author(s):  
Tao Wang ◽  
Changhua Lu ◽  
Yining Sun ◽  
Mei Yang ◽  
Chun Liu ◽  
...  

Early detection of arrhythmia and effective treatment can prevent deaths caused by cardiovascular disease (CVD). In clinical practice, the diagnosis is made by checking the electrocardiogram (ECG) beat-by-beat, but this is usually time-consuming and laborious. In the paper, we propose an automatic ECG classification method based on Continuous Wavelet Transform (CWT) and Convolutional Neural Network (CNN). CWT is used to decompose ECG signals to obtain different time-frequency components, and CNN is used to extract features from the 2D-scalogram composed of the above time-frequency components. Considering the surrounding R peak interval (also called RR interval) is also useful for the diagnosis of arrhythmia, four RR interval features are extracted and combined with the CNN features to input into a fully connected layer for ECG classification. By testing in the MIT-BIH arrhythmia database, our method achieves an overall performance of 70.75%, 67.47%, 68.76%, and 98.74% for positive predictive value, sensitivity, F1-score, and accuracy, respectively. Compared with existing methods, the overall F1-score of our method is increased by 4.75~16.85%. Because our method is simple and highly accurate, it can potentially be used as a clinical auxiliary diagnostic tool.


Sign in / Sign up

Export Citation Format

Share Document