scholarly journals Complement Factor D as a Strategic Target for Regulating the Alternative Complement Pathway

2021 ◽  
Vol 12 ◽  
Author(s):  
Jonathan Barratt ◽  
Ilene Weitz

The complement system is central to first-line defense against invading pathogens. However, excessive complement activation and/or the loss of complement regulation contributes to the development of autoimmune diseases, systemic inflammation, and thrombosis. One of the three pathways of the complement system, the alternative complement pathway, plays a vital role in amplifying complement activation and pathway signaling. Complement factor D, a serine protease of this pathway that is required for the formation of C3 convertase, is the rate-limiting enzyme. In this review, we discuss the function of factor D within the alternative pathway and its implication in both healthy physiology and disease. Because the alternative pathway has a role in many diseases that are characterized by excessive or poorly mediated complement activation, this pathway is an enticing target for effective therapeutic intervention. Nonetheless, although the underlying disease mechanisms of many of these complement-driven diseases are quite well understood, some of the diseases have limited treatment options or no approved treatments at all. Therefore, in this review we explore factor D as a strategic target for advancing therapeutic control of pathological complement activation.

2003 ◽  
Vol 10 (2) ◽  
pp. 216-220
Author(s):  
Marlene Pereira de Carvalho Florido ◽  
Patrícia Ferreira de Paula ◽  
Lourdes Isaac

ABSTRACT Due to the increasing numbers of reported clinical cases of complement deficiency in medical centers, clinicians are now more aware of the role of the complement system in the protection against infections caused by microorganisms. Therefore, clinical laboratories are now prepared to perform a number of diagnostic tests of the complement system other than the standard 50% hemolytic component assay. Deficiencies of alternative complement pathway proteins are related to severe and recurrent infections; and the application of easy, reliable, and low-cost methods for their detection and distinction are always welcome, notably in developing countries. When activation of the alternative complement pathway is evaluated in hemolytic agarose plates, some but not all human sera cross-react to form a late linear lysis. Since the formation of this linear lysis is dependent on C3 and factor B, it is possible to use late linear lysis to routinely screen for the presence of deficiencies of alternative human complement pathway proteins such as factor B. Furthermore, since linear lysis is observed between normal human serum and primary C3-deficient serum but not between normal human serum and secondary C3-deficient serum caused by the lack of factor H or factor I, this assay may also be used to discriminate between primary and secondary C3 deficiencies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Noriko Shinjyo ◽  
Kenji Hikosaka ◽  
Yasutoshi Kido ◽  
Hiroki Yoshida ◽  
Kazumi Norose

Toxoplasma gondii is a neurotropic protozoan parasite, which is linked to neurological manifestations in immunocompromised individuals as well as severe neurodevelopmental sequelae in congenital toxoplasmosis. While the complement system is the first line of host defense that plays a significant role in the prevention of parasite dissemination, Toxoplasma artfully evades complement-mediated clearance via recruiting complement regulatory proteins to their surface. On the other hand, the details of Toxoplasma and the complement system interaction in the brain parenchyma remain elusive. In this study, infection-induced changes in the mRNA levels of complement components were analyzed by quantitative PCR using a murine Toxoplasma infection model in vivo and primary glial cells in vitro. In addition to the core components C3 and C1q, anaphylatoxin C3a and C5a receptors (C3aR and C5aR1), as well as alternative complement pathway components properdin (CFP) and factor B (CFB), were significantly upregulated 2 weeks after inoculation. Two months post-infection, CFB, C3, C3aR, and C5aR1 expression remained higher than in controls, while CFP upregulation was transient. Furthermore, Toxoplasma infection induced significant increase in CFP, CFB, C3, and C5aR1 in mixed glial culture, which was abrogated when microglial activation was inhibited by pre-treatment with minocycline. This study sheds new light on the roles for the complement system in the brain parenchyma during Toxoplasma infection, which may lead to the development of novel therapeutic approaches to Toxoplasma infection-induced neurological disorders.


2009 ◽  
Vol 78 (3) ◽  
pp. 1250-1259 ◽  
Author(s):  
Gayle M. Boxx ◽  
Thomas R. Kozel ◽  
Casey T. Nishiya ◽  
Mason X. Zhang

ABSTRACT The complement system is important for host resistance to hematogenously disseminated candidiasis. However, modulation of complement activation by cell wall components of Candida albicans has not been characterized. Although intact yeast display mannan on the surface, glucan, typically located in the interior, becomes exposed during C. albicans infection. We show here the distinct effects of mannan and glucan on complement activation and opsonophagocytosis. Previous studies showed that intact cells are resistant to initiation of complement activation through the alternative pathway, and antimannan antibody reverses this resistance via an Fc-independent mechanism. The present study shows that this mannan-dependent resistance can be overcome by periodate-borohydride conversion of mannose polysaccharides to polyalcohols; cells treated with periodate-borohydride initiate the alternative pathway without the need for antibody. These observations identify an inhibitory role for intact mannan in complement activation. Next, removal of the surface-displayed mannan by acid treatment of periodate-borohydride cells exposes glucan. Glucan-displaying cells or purified β-glucan initiate the alternative pathway when incubated with the purified proteins of the alternative pathway alone, suggesting that C. albicans glucan is a natural activator of the alternative pathway. Finally, ingestion of mannan-displaying cells by human neutrophils requires anti-mannan antibody, whereas ingestion of glucan-displaying cells requires complement. These results demonstrate a contrasting requirement of natural antibody and complement for opsonophagocytosis of C. albicans cells displaying mannan or glucan. Thus, differential surface expression of mannan and glucan may influence recognition of C. albicans by the complement system.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4287-4287
Author(s):  
Jian Chen ◽  
Shangbin Yang ◽  
Spero R Cataland ◽  
Haifeng M Wu

Abstract Platelet transfusion is known for carrying a high incidence of clinically significant transfusion reactions such as febrile nonhemolytic transfusion reaction. The mechanism responsible for these transfusion-associated adverse events, however, is poorly understood. In this study, we hypothesize that prolonged in vitro storage activates the complement system in the platelet product that in turn causes a high frequency of transfusion reactions. Fresh platelet units obtained from three blood donors were stored on a temperature controlled platelet rotator between 22-24 C°. An aliquot of platelet product was obtained using sterile techniques from each unit on day 2 through day 7. The platelet product from each collection was then immediately centrifuged to obtain platelet poor plasma for the study of complement activation levels. For all study samples, C4d levels were assayed to evaluate the activation of the classical pathway, factor Bb levels were measured to determine the status of the complement alternative pathway, C3a levels were used to examine common pathway activation, and C5a and C5b-9 were assayed for determination of the terminal pathway activation of the complement system. The reference range for each complement factor was determined using citrated plasma from 40 healthy donors. As shown in table 1, both C4d and C3a demonstrated time-dependent increases relevant to storage time. On day 7, C4d and C3a levels were five-fold higher than their baseline levels measured on day 2. In contrast, factor Bb levels remained stable and within the normal range throughout the study. Over a storage span of seven days, the terminal complement factors C5a and C5b-9 were also significantly increased, although not as dramatically as C4d and C3a. Figure 1 illustrates a progressive increase of C3 activation in all three study donors over the time of storage (2-7 days). This report, for the first time, provides strong evidence that substantial complement activation occurs in the platelet products under standard storage conditions. A longer storage time of platelet product in vitro is accompanied by a remarkable elevation of complement activation biomarkers. By examining the pattern of complement profiles in the stored platelets, we further demonstrated that the activation of the classic pathway, rather than alternative pathway, appears to be the driving event that leads up to a level of over-reactivity of the complement system. Given the fact that complement hyperactivation is known to disrupt host homeostasis and cause disease, the adverse reactions seen in platelet recipients is likely related to the infusion of C3a and C5a which are known to be potent inflammatory cytokines. The observations from this study therefore provide a new perspective in understanding the pathophysiology responsible for adverse reactions from platelet transfusions. Further studies will be required to fully evaluate the clinical impact of complement activation in transfused platelet products. Figure 1 Figure 1. Disclosures Cataland: Alexion Corporation: Honoraria, Research Funding, Speakers Bureau. Wu:Alexion Corporation: Honoraria, Research Funding, Speakers Bureau.


1982 ◽  
Vol 155 (1) ◽  
pp. 231-247 ◽  
Author(s):  
G Pfaffenbach ◽  
M E Lamm ◽  
I Gigli

Activation of the complement system by IgA was investigated with immune complexes containing a mouse IgA myeloma protein with specificity for phosphorylcholine linked to bovine serum albumin (PC-BSA). These IgA anti-PC-BSA immune complexes activated the alternative complement pathway in mouse and guinea pig serum, while human complement was not affected. The activation proceeded with consumption of C3 but little or no consumption of C5. C3 did not bind to the IgA immune complexes during complement activation although it did bind covalently to IgG immune complexes. It is suggested that IgA immune complexes do not supply a suitable surface for C3 binding and effective alternative pathway convertase assembly; therefore, cleavage is limited and occurs primarily in the fluid phase. Without C3 binding, C5 cleavage does not occur nor can the alternative pathway activation proceed to the amplification step.


2017 ◽  
Vol 89 ◽  
pp. 173 ◽  
Author(s):  
Yuzhou Zhang ◽  
Adam Keenan ◽  
Margaret A. Lindorfer ◽  
Gabriella R. Pitcher ◽  
Ronald P. Taylor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document