antisense oligonucleotides
Recently Published Documents


TOTAL DOCUMENTS

2493
(FIVE YEARS 404)

H-INDEX

106
(FIVE YEARS 14)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 536
Author(s):  
Anais M. Quemener ◽  
Maria Laura Centomo ◽  
Scott L. Sax ◽  
Riccardo Panella

Antisense oligonucleotides (ASOs) are an increasingly represented class of drugs. These small sequences of nucleotides are designed to precisely target other oligonucleotides, usually RNA species, and are modified to protect them from degradation by nucleases. Their specificity is due to their sequence, so it is possible to target any RNA sequence that is already known. These molecules are very versatile and adaptable given that their sequence and chemistry can be custom manufactured. Based on the chemistry being used, their activity may significantly change and their effects on cell function and phenotypes can differ dramatically. While some will cause the target RNA to decay, others will only bind to the target and act as a steric blocker. Their incredible versatility is the key to manipulating several aspects of nucleic acid function as well as their process, and alter the transcriptome profile of a specific cell type or tissue. For example, they can be used to modify splicing or mask specific sites on a target. The entire design rather than just the sequence is essential to ensuring the specificity of the ASO to its target. Thus, it is vitally important to ensure that the complete process of drug design and testing is taken into account. ASOs’ adaptability is a considerable advantage, and over the past decades has allowed multiple new drugs to be approved. This, in turn, has had a significant and positive impact on patient lives. Given current challenges presented by the COVID-19 pandemic, it is necessary to find new therapeutic strategies that would complement the vaccination efforts being used across the globe. ASOs may be a very powerful tool that can be used to target the virus RNA and provide a therapeutic paradigm. The proof of the efficacy of ASOs as an anti-viral agent is long-standing, yet no molecule currently has FDA approval. The emergence and widespread use of RNA vaccines during this health crisis might provide an ideal opportunity to develop the first anti-viral ASOs on the market. In this review, we describe the story of ASOs, the different characteristics of their chemistry, and how their characteristics translate into research and as a clinical tool.


2022 ◽  
Author(s):  
Geetika Aggarwal ◽  
Subhashis Banerjee ◽  
Spencer A. Jones ◽  
Monica D. Pavlack ◽  
Yousri Benchaar ◽  
...  

Loss-of-function GRN mutations result in progranulin haploinsufficiency and are a common cause of frontotemporal dementia (FTD). Antisense oligonucleotides (ASOs) are emerging as a promising therapeutic modality for neurological diseases, but ASO-based strategies for increasing target protein levels are still relatively limited. Here, we report the use of ASOs to increase progranulin protein levels by targeting the miR-29b binding site in the 3′ UTR of the GRN mRNA, resulting in increased translation.


Author(s):  
Christopher M. Gabriel ◽  
Brian R. Pimentel ◽  
Christian A. Gomez ◽  
Isaiah Cedillo ◽  
Andrew A. Rodriguez

Author(s):  
Giulia del Rosso ◽  
Yari Carlomagno ◽  
Tiffany W. Todd ◽  
Caroline Y. Jones ◽  
Mercedes Prudencio ◽  
...  

The aberrant translation of a repeat expansion in chromosome 9 open reading frame 72 (C9orf72), the most common cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), results in the accumulation of toxic dipeptide repeat (DPR) proteins in the central nervous system We have found that, among the sense DPR proteins, HDAC6 specifically interacts with the poly (GA) and co-localizes with inclusions in both patient tissue and a mouse model of this disease (c9FTD/ALS). Overexpression of HDAC6 increased poly (GA) levels in cultured cells independently of HDAC6 deacetylase activity, suggesting that HDAC6 can modulate poly (GA) pathology through a mechanism that depends upon their physical interaction. Moreover, decreasing HDAC6 expression by stereotaxic injection of antisense oligonucleotides significantly reduced the number of poly (GA) inclusions in c9FTD/ALS mice. These findings suggest that pharmacologically reducing HDAC6 levels could be of therapeutic value in c9FTD/ALS.


2022 ◽  
Vol 119 (3) ◽  
pp. e2114886119
Author(s):  
Wren E. Michaels ◽  
Cecilia Pena-Rasgado ◽  
Rusudan Kotaria ◽  
Robert J. Bridges ◽  
Michelle L. Hastings

CFTR gene mutations that result in the introduction of premature termination codons (PTCs) are common in cystic fibrosis (CF). This mutation type causes a severe form of the disease, likely because of low CFTR messenger RNA (mRNA) expression as a result of nonsense-mediated mRNA decay, as well as the production of a nonfunctional, truncated CFTR protein. Current therapeutics for CF, which target residual protein function, are less effective in patients with these types of mutations due in part to low CFTR protein levels. Splice-switching antisense oligonucleotides (ASOs), designed to induce skipping of exons in order to restore the mRNA open reading frame, have shown therapeutic promise preclinically and clinically for a number of diseases. We hypothesized that ASO-mediated skipping of CFTR exon 23 would recover CFTR activity associated with terminating mutations in the exon, including CFTR p.W1282X, the fifth most common mutation in CF. Here, we show that CFTR lacking the amino acids encoding exon 23 is partially functional and responsive to corrector and modulator drugs currently in clinical use. ASO-induced exon 23 skipping rescued CFTR expression and chloride current in primary human bronchial epithelial cells isolated from a homozygote CFTR-W1282X patient. These results support the use of ASOs in treating CF patients with CFTR class I mutations in exon 23 that result in unstable CFTR mRNA and truncations of the CFTR protein.


Author(s):  
Hidenori Yasuhara ◽  
Tokuyuki Yoshida ◽  
Kiyomi Sasaki ◽  
Satoshi Obika ◽  
Takao Inoue

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 97
Author(s):  
Maria Gagliardi ◽  
Ana Tari Ashizawa

The B-cell lymphoma 2 (Bcl-2) family, comprised of pro- and anti-apoptotic proteins, regulates the delicate balance between programmed cell death and cell survival. The Bcl-2 family is essential in the maintenance of tissue homeostasis, but also a key culprit in tumorigenesis. Anti-apoptotic Bcl-2, the founding member of this family, was discovered due to its dysregulated expression in non-Hodgkin’s lymphoma. Bcl-2 is a central protagonist in a wide range of human cancers, promoting cell survival, angiogenesis and chemotherapy resistance; this has prompted the development of Bcl-2-targeting drugs. Antisense oligonucleotides (ASO) are highly specific nucleic acid polymers used to modulate target gene expression. Over the past 25 years several Bcl-2 ASO have been developed in preclinical studies and explored in clinical trials. This review will describe the history and development of Bcl-2-targeted ASO; from initial attempts, optimizations, clinical trials undertaken and the promising candidates at hand.


2021 ◽  
Vol 14 (4) ◽  
pp. 1781-1790
Author(s):  
Dalia Zaafar ◽  
Toka Elemary ◽  
Yara Abdel Hady ◽  
Aya Essawy

The term "non-druggable" refers to a protein that cannot be targeted pharmacologically; recently, significant efforts have been made to convert these proteins into targets that are reachable or "druggable." Pharmacologically targeting these difficult proteins has emerged as a major challenge in modern drug development, necessitating the innovation and development of new technologies. The idea of using RNA-targeting therapeutics as a platform to reach unreachable targets is very appealing. Antisense oligonucleotides, nucleic acid or aptamers, RNA interference therapeutics, microRNA, and synthetic RNA are examples of RNA-targeting therapeutics. Many of these agents were FDA-approved for the treatment of rare or genetic diseases, as well as molecular markers for disease diagnosis. As a promising type of therapeutic, many studies are being conducted in order for more and more of them to be approved and used in different disease treatments and to shift them from treating rare diseases only to being used as more specific targeting agents in the treatment of various common diseases. This article will look at some of the most recent technological and pharmaceutical advances that have contributed to the erosion of the concept of undruggability.


Author(s):  
A.A. Gorbunov ◽  
T.M. Shipitsyna ◽  
E.B. Pilipenko-Koshel

According to the latest statistics, brain gliomas are the most common cause of death from CNS tumors. Brain gliomas are also ranked as the second (after stroke) cause of brain surgery The mortality rate from gliomas is high and sometimes reaches 80 %. It is because the tumor grows from undifferentiated cells, which causes its peracute development and malignant transformation. Symptoms of glioma occur at stages 3 and 4, when all treatment is symptomatic, and operations are palliative. In this regard, it is necessary to develop and introduce methods for non-surgical glioma treatment. These methods include the use of antisense oligonucleotides, optogenetics, and oncolytic viruses. The aim of antisense oligonucleotides is to replace a section in a glioma cell genome with a foreign one, which disrupts cell division and leads to apoptosis and necrosis of the entire tumor. Optogenetics excludes the introduction of substances into the body. It provides a certain light signal to glioma cells, which also suppresses the growth of an undifferentiated tumor. Oncolytic viruses are genetically modified viruses that identify tumor cells, penetrate into them and start a cascade of apoptotic reactions Despite all success, such methods are still studied at the laboratory level, their implementation in practical medicine is slow and cautious. However, insufficient knowledge retards the widespread use of potentially promising and effective drugs. Scientists around the world are developing methods to treat brain gliomas at different stages of their development. This article reflects modern achievements of scientists and neurosurgeons, describing new methods for brain glioma treatment. Key words: brain glioma, optogenetics, antisense oligonucleotides, oncolytic viruses, p53 gene. Согласно последним данным статистики, глиомы мозга являются наиболее частой причиной смертей от онкологии центральной нервной системы, а также занимают второе место по частоте как причина хирургических вмешательств на головной мозг, уступая инсультам. Смертность от глиом высока и порой достигает 80 %. Причина этого заключается в том, что опухоль растет из недифференцированных клеток, что обусловливает её молниеносный рост и быстрое озлокачествление. Симптомы глиомы возникают на 3–4 стадии развития, когда все лечение направлено на ликвидацию симптомов, а операции носят паллиативный характер. В связи с этим необходима разработка и внедрение методов по нехирургическому лечению глиом. Такими методами являются использование антисмысловых олигонуклеотидов, оптогенетика, применение онколитических вирусов. Суть использования антисмысловых олигонуклеотидов заключается в замене участка генома клетки глиомы на инородный, попавший извне, что нарушает деление клеток и приводит к апоптозу и некрозу всей опухоли. Оптогенетика исключает введение веществ в организм и заключается в подаче определенного светового сигнала на глиозные клетки, что также тормозит рост недифференцированной опухоли. Онколитические вирусы – это генномодифицированные вирусы, которые определяют опухолевые клетки, проникают в них и запускают каскад апоптотических реакций. Несмотря на все успехи, данные методы продолжают изучаться на уровне лабораторий, их внедрение в практическую медицину происходит медленно и со страхом. Однако недостаточная изученность тормозит широкое применение потенциально перспективных и эффективных лекарств. Учеными мира разрабатываются методы, позволяющие лечить глиомы мозга на разных стадиях их развития. Данная статья отображает современные достижения ученых и нейрохирургов в поисках возможности применения такого рода методов. Ключевые слова: глиома мозга, оптогенетика, антисмысловые олигонуклеотиды, онколитические вирусы, ген р53.


2021 ◽  
Author(s):  
Ahmed Ibrahim

Abstract To inhibit HIV replication and infection, we have designed novel linear single stranded modified antisense nucleic acid oligonucleotides ending with or without chain terminating bases (Which resemble the shape of the comb). They were targeting specifically the HIV-1 clone pNL4-3 strong promoter pre PBS region to stop cDNA synthesis within or before the R region, preventing the viral reverse transcriptase (RT) jumping to the 3' end and continue copying the virus. The main advantages of our comb shaped oligonucleotides are their specificity and extreme protection against resistance by known viral mutations. Promising results were obtained for two 15-mer compounds at one tenth azidothymidine concentration. As a result we claim that when adapted properly, the comb shaped antivirals can be used to target the genomic RNA of a number of serious viruses such as for example Ebola, SARS-CoV-2, Influenza, Dengue, hepatitis C, Chikungunya and Zika as they are all using polymerases to copy their genomic RNA1-8. Their genomic RNA could be destroyed through the human or viral endonucleases instead of the viral RT RNAseH site when their polymerases are stopped at specific sites.


Sign in / Sign up

Export Citation Format

Share Document