scholarly journals Rabbit Hemorrhagic Disease Virus Non-structural Protein 6 Induces Apoptosis in Rabbit Kidney Cells

2019 ◽  
Vol 9 ◽  
Author(s):  
Mengmeng Chen ◽  
Xing Liu ◽  
Bo Hu ◽  
Zhiyu Fan ◽  
Yanhua Song ◽  
...  
2009 ◽  
Vol 90 (12) ◽  
pp. 2952-2955 ◽  
Author(s):  
Liu Chen ◽  
Guangqing Liu ◽  
Zheng Ni ◽  
Bin Yu ◽  
Tao Yun ◽  
...  

Rabbit hemorrhagic disease virus (RHDV) has two structural proteins: the major capsid protein VP60 and the minor capsid protein VP2. VP2 is speculated to play an important role in the virus life cycle. To investigate the effect of VP2 on VP60 expression, three types of experiment (baculovirus–insect cell system, mammalian–luciferase assay system and in vitro coupled transcription/translation system) were used to express VP60 alone or co-expressed with VP2. Both forms of VP60 were able to form virus-like particles in insect cells. Western blot analysis and dual-luciferase assays demonstrated that the presence of VP2 results in downregulation of the expression of VP60 in vivo. Real-time RT-PCR of mRNA levels showed that downregulation of VP60 occurs at the transcriptional level. The ability of the viral minor structural protein VP2 to regulate capsid protein levels may contribute to effective virus infection.


1999 ◽  
Vol 73 (5) ◽  
pp. 4452-4455 ◽  
Author(s):  
S. Castañón ◽  
M. S. Marín ◽  
J. M. Martín-Alonso ◽  
J. A. Boga ◽  
R. Casais ◽  
...  

ABSTRACT The major structural protein VP60 of rabbit hemorrhagic disease virus (RHDV) has been produced in transgenic potato plants under the control of a cauliflower mosaic virus 35S promoter or a modified 35S promoter that included two copies of a strong transcriptional enhancer. Both types of promoters allowed the production of specific mRNAs and detectable levels of recombinant VP60, which were higher for the constructs carrying the modified 35S promoter. Rabbits immunized with leaf extracts from plants carrying this modified 35S promoter showed high anti-VP60 antibody titers and were fully protected against the hemorrhagic disease.


2008 ◽  
Vol 89 (12) ◽  
pp. 3080-3085 ◽  
Author(s):  
Guangqing Liu ◽  
Zheng Ni ◽  
Tao Yun ◽  
Bin Yu ◽  
Liu Chen ◽  
...  

Rabbit hemorrhagic disease virus (RHDV), a member of the family Caliciviridae comprising positive-stranded RNA viruses, is a highly virulent pathogen of rabbits. Until recently, studies into the molecular mechanisms of RHDV replication and pathogenesis have been hindered by the lack of an in vitro culture system and reverse genetics. This study describes the generation of a DNA-based reverse genetics system for RHDV and the subsequent investigation of the biological role of the RHDV VP2 protein. The full-length RHDV genome was assembled as a single cDNA clone and placed under the control of the eukaryotic human cytomegalovirus promoter. Transfection of cells with the DNA clone resulted in a clear cytopathic effect and the generation of infectious progeny virions. The reconstituted virus was stable and grew to titres similar to that of the parental virus. Although previous reports have suggested that the minor structural protein (VP2) of other caliciviruses is essential for the production of infectious virions, using the DNA-launch-based RHDV reverse genetics system described here it was demonstrated that VP2 is not essential for RHDV infectivity. Transfection of cells with a cDNA clone of RHDV lacking VP2 resulted in the generation of infectious virions. These studies indicate that the presence of VP2 could reduce the replication of RHDV, suggesting that it may play a regulatory role in the life cycle of RHDV.


2021 ◽  
Vol 9 (5) ◽  
pp. 972
Author(s):  
Joana Abrantes ◽  
Ana M. Lopes

Since the early 1980s, the European rabbit (Oryctolagus cuniculus) has been threatened by the rabbit hemorrhagic disease (RHD). The disease is caused by a lagovirus of the family Caliciviridae, the rabbit hemorrhagic disease virus (RHDV). The need for detection, identification and further characterization of RHDV led to the development of several diagnostic tests. Owing to the lack of an appropriate cell culture system for in vitro propagation of the virus, much of the methods involved in these tests contributed to our current knowledge on RHD and RHDV and to the development of vaccines to contain the disease. Here, we provide a comprehensive review of the RHDV diagnostic tests used since the first RHD outbreak and that include molecular, histological and serological techniques, ranging from simpler tests initially used, such as the hemagglutination test, to the more recent and sophisticated high-throughput sequencing, along with an overview of their potential and their limitations.


2016 ◽  
Vol 215 ◽  
pp. 20-24 ◽  
Author(s):  
Bo Hu ◽  
Zhiyu Fan ◽  
Fang Wang ◽  
Yanhua Song ◽  
Houjun Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document