scholarly journals Ni(II) Interactions in Boreal Paenibacillus sp., Methylobacterium sp., Paraburkholderia sp., and Pseudomonas sp. Strains Isolated From an Acidic, Ombrotrophic Bog

2019 ◽  
Vol 10 ◽  
Author(s):  
Jenna Knuutinen ◽  
Malin Bomberg ◽  
Marianna Kemell ◽  
Merja Lusa
2016 ◽  
Vol 44 ◽  
pp. 26-37 ◽  
Author(s):  
Merja Lusa ◽  
Jukka Lehto ◽  
Hanna Aromaa ◽  
Jenna Knuutinen ◽  
Malin Bomberg

2021 ◽  
Vol 9 (9) ◽  
pp. 1901
Author(s):  
Greta Striganavičiūtė ◽  
Jonas Žiauka ◽  
Vaida Sirgedaitė-Šėžienė ◽  
Dorotėja Vaitiekūnaitė

Aspens (Populus tremula and its hybrids), economically and ecologically important fast-growing trees, are often damaged by Phellinus tremulae, a rot-causing fungus. Plant-associated bacteria can be used to increase plant growth and resistance; however, no systematic studies relating the activity of symbiotic bacteria to aspen resistance against Phellinus tremulae have been conducted so far. The present pioneer study investigated the responses of two Populus tremula and two P. tremula × P. tremuloides genotypes to in vitro inoculations with, first, either Pseudomonas sp. or Paenibacillus sp. bacteria (isolated originally from hybrid aspen tissue cultures and being most closely related to Pseudomonas oryzihabitans and Paenibacillus tundrae, respectively) and, in the subsequent stage, with Phellinus tremulae. Both morphological parameters of in vitro-grown plants and biochemical content of their leaves, including photosynthesis pigments and secondary metabolites, were analyzed. It was found that both Populus tremula × P. tremuloides genotypes, whose development in vitro was significantly damaged by Phellinus tremulae, were characterized by certain responses to the studied bacteria: decreased shoot development by both Paenibacillus sp. and Pseudomonas sp. and increased phenol content by Pseudomonas sp. In turn, these responses were lacking in both Populus tremula genotypes that showed in vitro resistance to the fungus. Moreover, these genotypes showed positive long-term growth responses to bacterial inoculation, even synergistic with the subsequent fungal inoculation. Hence, the studied bacteria were demonstrated as a potential tool for the improved in vitro propagation of fungus-resistant aspen genotypes.


2021 ◽  
Vol 52 (6) ◽  
pp. 1508-1515
Author(s):  
B. Yasin ◽  
O. Omer Ali ◽  
T. Sulaiman Rashid

Root diseases are one of the main forest nursery problems that have a significant impact on forest production which are caused by Fusarium solani. Rhizobacteria from healthy forest soils were isolated and screened in streak method to select antagonistic strains against F. solani. Two isolates showed high antagonistic activity and molecularly identified as Paenibacillus sp. and Pseudomonas sp. The capability of the Paenibacillus sp. and Pseudomonas sp. were tested in greenhouse plastic containers experiments against F. solani. Soil bacterization with Paenibacillus sp. and Pseudomonas sp. significantly protected thuja seedlings from F. solani compared to the untreated control seedlings. The containers added by Paenibacillus sp. and pseudomonas sp. are also showed plant growth promotion including shoot length, root length, dry and wet weights of the seedlings as well as the chlorophyll contents of the thuja seedlings compared to the untreated control plants. In this research it has been showing that the rhizobacterial treatments have potential to decrease the effect of fungal disease severity, promoting the plant growth and also helps plants to maintain a good health. 


2015 ◽  
Vol 10 (2) ◽  
pp. 619-625 ◽  
Author(s):  
Nilesh Sonune ◽  
Anil Garode

The potential of bacteria for the treatment of municipal wastewater was investigated in present study. Total eight bacterial isolates were used for this study that showed growth on wastewater agar medium. These isolates were identified on the basis of morphological and biochemical test and identified as Bacillus licheniformis NW16, Pseudomonas aeruginosa NS19, Pseudomonas sp. NS20, Planococcus salinarum NS23, Stenotrophomonas maltophilia NS21, Paenibacillus sp. NW9, Paenibacillus borealis NS3 and Aeromonas hydrophilia NS17. The B. licheniformis NW16 showed highest potential to reduce all parameter under study than other isolates except Ammonical nitrogen. B. licheniformis NW16 and Aeromonas hydrophilia NS17 showed maximum reduction (42.86%) in BOD each. B. licheniformis NW16 and Paenibacillus sp. NW9 showed 82.76% and 81.61% reduction in COD respectively. B. licheniformis NW16, P. salinarum NS23 and Aeromonas hydrophilia NS17 showed reduction in nitrate ranging from 17.36%-63.64%. All the isolates have potential to reduced phosphate from 17.55% -72.3%. B. licheniformis NW16, Ps. aeruginosa NS19, Pseudomonas sp. NS20, Paenibacillus sp. NW9 and Aeromonas hydrophilia NS17 showed reduction in TSS ranging from 42.69%-79.94%. B. licheniformis NW16, Ps. aeruginosa NS19, Pseudomonas sp. NS20, S. maltophilia NS21 and Paenibacillus sp. NW9 showed reduction in TDS ranging from 14%-81.4%.


2021 ◽  
Vol 9 (12) ◽  
pp. 2504
Author(s):  
Greta Striganavičiūtė ◽  
Jonas Žiauka ◽  
Vaida Sirgedaitė-Šėžienė ◽  
Dorotėja Vaitiekūnaitė

European ash (Fraxinus excelsior) is highly affected by the pathogenic fungus Hymenoscyphus fraxineus in all of Europe. Increases in plant’s secondary metabolite (SM) production is often linked tol enhanced resistance to stress, both biotic and abiotic. Moreover, plant-associated bacteria have been shown to enhance SM production in inoculated plants. Thus, our hypothesis is that bacteria may boost ash SM production, hence priming the tree’s metabolism and facilitating higher levels of resilience to H. fraxineus. We tested three different ash genotypes and used Paenibacillus sp. and Pseudomonas sp. for inoculation in vitro. Total phenol (TPC), total flavonoid (TFC) and carotenoid contents were measured, as well as the chlorophyll a/b ratio and morphometric growth parameters, in a two-stage trial, whereby seedlings were inoculated with the bacteria during the first stage and with H. fraxineus during the second stage. While the tested bacteria did not positively affect the morphometric growth parameters of ash seedlings, they had a statistically significant effect on TPC, TFC, the chlorophyll a/b ratio and carotenoid content in both stages, thus confirming our hypothesis. Specifically, in ash genotype 64, both bacteria elicited an increase in carotenoid content, TPC and TFC during both stages. Additionally, Pseudomonas sp. inoculated seedlings demonstrated an increase in phenolics after infection with the fungus in both genotypes 64 and 87. Our results indicate that next to genetic selection of the most resilient planting material for ash reforestation, plant-associated bacteria could also be used to boost ash SM production.


2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2009 ◽  
Vol 8 (3) ◽  
pp. 549-552 ◽  
Author(s):  
Dana-Camelia Cocut ◽  
Corneliu Cojocaru ◽  
Mariana Diaconu ◽  
Matei Macoveanu

Sign in / Sign up

Export Citation Format

Share Document