Bacterial Isolates
Recently Published Documents


TOTAL DOCUMENTS

3715
(FIVE YEARS 2123)

H-INDEX

71
(FIVE YEARS 18)

Author(s):  
Ajayi AO ◽  

This study shows the bactericidal effect of Electromagnetic Field on fruit juice microbes. Short shelf-life period of fruit juice caused by spoilage organisms has limiting factor for its economy value. The Eighteen microorganisms isolated from both fresh and spoilt fruit samples (Pineapple and Apple), and identified during the study include, twelve (12) bacteria and Six (6) fungi, out of which only the bacterial isolates were exposed to electromagnetic field of 0mG, 500mG, and 5000mG for thirty minutes. The bacteria species were Leuconostoc mesentroides, Bacillus species, Lactobacillus brevis, Microbacterium species, Clostridium species, Bacillus cereus, Acetobacter aceti, and Staphylococcus aureus. The Gram negative bacteria isolates were Erwinia carotovora, Erwinia ananas, and Proteus species. Exposure of the isolates to an electromagnetic field of 0mG, 500mG and 5000mG showed a decrease in some electromagnetic field magnitude. This study shows reduction in growth range among most bacterial species tested at 500mG electromagnetic radiation exposure, but the growth of many of these bacterial species were triggered at 5000mG electromagnetic radiation exposure. This may mean an initiation of: adaptation mechanism, growth mechanism in some microorganism, and sugar content of the fruit juice from which they are being isolated. The exposure of the bacteria to electromagnetic field elicited detectable responses therefore depends on the adaptation mechanism of each bacteria and sugar content of the fruit from which it is being isolated from. Thus, future research can be done to optimize the limits specified for target microbes that are strength and frequency of this EMF in diseases control.


2022 ◽  
Vol 18 (1) ◽  
pp. 014-026
Author(s):  
Mercy M Umokaso ◽  
Bernard JO Efiuvwevwere ◽  
Francis S Ire

Cereal-porridge(‘ogi’) was produced by spontaneous fermentation using maize and sorghum substrates. The microbiological dynamics involved were monitored over a period of 48h fermentation. Bacteria, yeasts and moulds were isolated. Based on the morphological, cultural and biochemical test results, the aerobic bacterial isolates were identified as Proteus vulgaris, Proteus mirabilis, Klebsiella sp, Staphylococcus aureus, Lactobacillus sp, Pseudomonas sp, Citrobacter sp, Bacillus sp, Proteus sp, Shigella sp, and Escherichia coli. The Lactic acid bacteria were Lactococcus sp, Enterococcus sp, Lactobacillus fermentum, Lactobacillus sp. The yeast isolates were 2 strains of Saccharomyces cerevisiae, one other Saccharomyces sp and a Candida sp. The moulds were Aspergillus niger, Aspergillus flavus, Rhizopus sp and Penicillium sp. The lactic acid bacteria (LAB) isolated were 2 strains of Lactococcus lactis, 2 Enterobacter spp, 5 strains of Lactobacillus fermentum and 1 other Lactobacillus sp. The initial total viable aerobic bacterial count at 0h in maize, sorghum and maize-sorghum blend were 4.6 × 104, 7.3 × 104 and 2.4 × 105cfu/ml respectively. The growths rose to peaks of 6.5 × 107 and 3.9 × 107cfu/ml at 24h in maize and maize-sorghum blend, respectively. A Peak of 4.7 x 107cfu/ml was attained at 36h in sorghum. Coliform bacteria and moulds growths in the three samples attained peaks of growth at 12h and reduced till there was no growth by 48h. Lactic acid bacteria and yeasts increased in numbers till the end of fermentation. The initial pH value at 0h was lowest in maize-sorghum blend sample (5.43) and highest in maize (5.75). Final values at 48h were 3.76, 3.78 and 3.75 in maize, sorghum and maize-sorghum blend samples respectively. There were no significant differences between the microbial growth patterns, changes in pH, total titratable acidity (TTA) and amylase enzymatic activities in maize, sorghum and maize-sorghum blend samples during fermentation.


2022 ◽  
Vol 8 (1) ◽  
pp. 31-37
Author(s):  
Vijay Kumar ◽  
Swayambhu Shubham ◽  
Satyendra Narayan Singh

Background: UTI constitute a major public health problem in India accounting 2nd most common infection next to respiratory tract infection. They are responsible for increasing treatment cost and significant morbidity.Aim:-To determine the incidence of UTI, evaluation of pathogens responsible and their antimicrobial susceptibility pattern in the population.Methods:Urine samples were collected from 300 patients attending the OPD Patna medical college, Patna during the period of 18 months (January 2017 to June 2018) Antimicrobial sensitivity testing was done for the bacterial isolates present in the sample by Kirby- Bauer disc diffusion method. Only those samples were taken into consideration which develops count equal to or greater than 1*105CFU/ml as indicated by Kass.Results:Out of 300 samples collected 146 (48.66%)) yielded bacterial growth. Out of 146 culture isolates E.Coli was the most common pathogen followed by klebsiella, CoNS and staphylococcus. Antibiotic sensitivity was performed on all the isolates. It was observed that highest sensitivity was 49.31% to amikacin, gentamycin (45.89%), nitrofurantoin (38.35%) meropenem (27.39%).Conclusions:It was observed that high grade of resistance to ampicillin, cotrimoxazole, ciprofloxacin, cefuroxime, chloramphenicol, cefotaxime, cefazolin, amoxicillin + clavulanic acid and gentamycin is present as a result of misuse or improper use of antibiotic in the community. Hence urine culture is necessary for the diagnostic screening of UTI before the treatment.


BioTech ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Savanah Senn ◽  
Kelly Pangell ◽  
Adrianna L. Bowerman

The purpose of this paper is to elucidate the roles that microbes may be playing in the rootzone of the medicinal plant Daturainoxia. We hypothesized that the microbes associated with the Datura rootzone would be significantly different than the similar surrounding fields in composition and function. We also hypothesized that rhizospheric and endophytic microbes would be associated with similar metabolic functions to the plant rootzone they inhabited. The methods employed were microbial barcoding, tests of essential oils against antibiotic resistant bacteria and other soil bacterial isolates, 16S Next Generation Sequencing (NGS) metabarcoding, and Whole Genome Shotgun (WGS) taxonomic and functional analyses. A few of the main bacterial genera of interest that were differentially abundant in the Datura root microbiome were Flavobacterium (p = 0.007), Chitinophaga (p = 0.0007), Pedobacter (p = 6 × 10−5), Bradyhizobium (p = 1 × 10−8), and Paenibacillus (p = 1.46 × 10−6). There was significant evidence that the microbes associated with the Datura rootzone had elevated function related to bacterial chalcone synthase (p = 1.49 × 10−3) and permease genes (p < 0.003). There was some evidence that microbial functions in the Datura rootzone provided precursors to important plant bioactive molecules or were beneficial to plant growth. This is important because these compounds are phyto-protective antioxidants and are precursors to many aromatic bioactive compounds that are relevant to human health. In the context of known interactions, and current results, plants and microbes influence the flavonoid biosynthetic pathways of one other, in terms of the regulation of the phenylpropanoid pathway. This is the first study to focus on the microbial ecology of the Datura rootzone. There are possible biopharmaceutical and agricultural applications of the natural interplay that was discovered during this study of the Datura inoxia rhizosphere.


Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 91
Author(s):  
Kevin Maclean ◽  
Fernande Olpa J Pankendem Njamo ◽  
Mahloro Hope Serepa-Dlamini ◽  
Kulsum Kondiah ◽  
Ezekiel Green

SCUBA divers are predisposed to otitis externa caused by Pseudomonas aeruginosa, which is becoming increasingly multi-drug resistant (MDR). The present work assessed the antibiotic resistance profiles of P. aeruginosa obtained from SCUBA divers and their environment in Sodwana Bay, South Africa. Bacterial isolates from a total of 137 random water and ear swab samples were identified using biochemical and molecular methods. P. aeruginosa strains were further evaluated for antibiotic susceptibility using the Kirby–Bauer assay. Double disk synergy test (DDST) to confirm metallo-β-lactamase (MBL) production and PCR amplification of specific antibiotic resistance genes was performed. All (100%) 22 P. aeruginosa isolates recovered were resistant to 6 of the β-lactams tested including imipenem but exhibited susceptibility to trimethoprim–sulfamethoxazole. MBL production was observed in 77% of isolates while the most prevalent extended-spectrum β-lactamase (ESBL) genes present included blaAmpC (86.9%) followed by blaTEM (82.6%). Sulfonamide resistance was largely encoded by sul1 (63.6%) and sul2 (77.3%) genes with a high abundance of class 1 integrons (77.3%) of which 18.2% carried both Intl1 and Intl2. P. aeruginosa found in Sodwana Bay exhibits multi-drug resistance (MDRce) to several pharmaceutically important drugs with the potential to transfer antibiotic resistance to other bacteria if the judicious use of antibiotics for their treatment is not practiced.


2022 ◽  
Vol 8 ◽  
Author(s):  
Mohammad Imran Mir ◽  
Bee Hameeda ◽  
Humera Quadriya ◽  
B. Kiran Kumar ◽  
Noshin Ilyas ◽  
...  

A diverse group of rhizobacteria persists in the rhizospheric soil, on the surface of roots, or in association with rice plants. These bacteria colonize plant root systems, enhance plant growth and crop yield. Indigenous rhizobacteria are known to promote soil health, grain production quality and serve as sustainable bioinoculant. The present study was aimed to isolate, identify and characterize indigenous plant growth promoting (PGP) diazotrophic bacteria associated with the rhizosphere of rice fields from different areas of Jammu and Kashmir, India. A total of 15 bacteria were isolated and evaluated for various PGP traits, antagonistic activity against phytopathogens, production of hydrolytic enzymes and biofilm formation under in-vitro conditions. The majority of the isolated bacteria were Gram-negative. Out of 15 bacterial isolates, nine isolates produced IAA (12.24 ± 2.86 to 250.3 ± 1.15 μg/ml), 6 isolates exhibited phosphate solubilization activity (36.69 ± 1.63 to 312.4 ± 1.15 μg/ml), 7 isolates exhibited rock phosphate solubilization while 5 isolates solubilized zinc (10–18 mm), 7 isolates showed siderophore production, 8 isolates exhibited HCN production, 6 isolates exhibited aminocyclopropane-1-carboxylate (ACC) deaminase activity, 13 isolates exhibited cellulase activity, nine isolates exhibited amylase and lipase activity and six isolates exhibited chitinase activity. In addition, 5 isolates showed amplification with the nifH gene and showed a significant amount of nitrogenase activity in a range of 0.127–4.39 μmol C2H4/mg protein/h. Five isolates viz., IHK-1, IHK-3, IHK-13, IHK-15 and IHK-25 exhibited most PGP attributes and successfully limited the mycelial growth of Rhizoctonia solani and Fusarium oxysporum in-vitro. All the five bacterial isolates were identified based on morphological, biochemical and 16S rDNA gene sequencing study, as Stenotrophomonas maltophilia, Enterobacter sp., Bacillus sp., Ochrobactrum haematophilum and Pseudomonas aeruginosa. Rice plants developed from seeds inoculated with these PGP strains individually had considerably higher germination percentage, seed vigor index and total dry biomass when compared to control. These findings strongly imply that the PGP diazotrophic bacteria identified in this work could be employed as plant growth stimulators in rice.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 190
Author(s):  
Christian Moguet ◽  
Camille Gonzalez ◽  
Thierry Naas ◽  
Stéphanie Simon ◽  
Hervé Volland

Background: Early detection of expanded-spectrum cephalosporinase (ESC) hydrolyzing ß-lactamases is essential for antibiotic stewardship. Here we have developed a multiplex lateral flow immunoassay (LFIA) that detects cefotaxime-hydrolyzing activity as well as the most prevalent ESC-hydrolyzing ß-lactamases: the CTX-M-like. Methods: The Rapid LFIA ESC test was evaluated retrospectively on 188 (139 Enterobacterales, 30 Pseudomonas spp. and 14 Acinetobacter spp.) agar-grown bacterial isolates with well-characterized ß-lactamase content. One single colony was resuspended in 150 µL extraction buffer containing cefotaxime, incubated at room temperature for 30 min prior to loading on the LFIA for reading within 10 min. Results: Out of the 188 isolates, all 17 that did not express a β-lactamase hydrolyzing cefotaxime gave negative results, and all 171 isolates expressing a β-lactamase known to hydrolyze cefotaxime, gave a positive test result. In addition, all 86 isolates expressing a CTX-M-variant belonging to one of the five CTX-M-subgroups were correctly identified. The sensitivity and specificity was 100% for both tests. Conclusions: The results showed that the multiplex LFIA was efficient, fast, low cost and easy to implement in routine laboratory work for the confirmation of ESC hydrolyzing activity and the presence of CTX-M enzymes.


2022 ◽  
Vol 11 (6) ◽  
pp. 725-732
Author(s):  
Sujata S Hosmani ◽  
Dattu Singh ◽  
Vandana Rathod ◽  
Ravi M ◽  
Krishna Rayudu ◽  
...  

Bacterial endophytes colonize an ecological niche which is unexplored site makes them suitable to produce pharmacologically active substances with vast biotechnological potential therefore, xerophytes were chosen to isolate the endophytes. In the present study forty endophytic bacterial isolates were isolated from xerophytic plants grown near poultry farms and feather dumping sites. Of them eight isolates showed zone of hydrolysis and the maximum zone of hydrolyisis of 36mm was with VRCS-4 on skimmed milk agar. This isolate exhibited efficient feather degradation and was identified as Aneurinibacillus aneurinilyticus based on its morphological, biochemical test and molecular sequencing method. The isolate was deposited in NCBI with an accession number MW227423.The isolate showed maximum en-zyme activity of 140.24U/ml at 72h, pH 7.5 and 40º C at 140 rpm. Chicken feather 1% (w/v) used as a sole source of carbon and nitrogen. Feather deg-radation by A.aneurinilyticus VRCS-4 showed 90% degradation in feather meal broth. Ours appears to be the first report on keratinase production by endophytic bacteria from xerophytic plant (Opuntia ficus -indica).


Author(s):  
Md. Raihan Uddin ◽  
Pranab Roy ◽  
Sukhendu Mandal

Polar microbiology remains as the most fascinating area of research which mainly focuses on exploration of psychrophilic organisms for having their cold-active enzymes of biotechnological potential. In this study, we have explored a culturable bacterial community and isolated 27 bacterial isolates with a different morphology from an unexplored site of Arctic region, for the possibility of identifying various active biomolecules. Screening of various isolates in a culture dependent manner helped us to identify strains capable of producing extracellular enzymes. The optimal growth parameters of most of the isolates are ranges between 18-22°C temperature, 3-5 days of incubation, 6-9 pH, and 3-5% (w/v) NaCl in LB media. It has also been found that among these isolates, 63% are able to produce lipase, 17% amylase, 7% xylanase and 7% isolates have responded for phosphatase activity but there are no isolates found for gelatinase and cellulase production ability. In addition, few isolates can also produce secretory protease, urease, β-galactosidase, etc. 16SrRNA gene sequence-based phylogeny revealed that the isolates belong to the genera of Psychrobacter, Planococcus, Halomonas, Arthrobacter, Oceanisphaera, Marinbacter, Pseudomonas, Algoriphagus. Strikingly, none of the Arctic isolates showed resistance towards commonly used antibiotics which indicates that the unexplored habitat is devoid of antibiotic exposure and so does the rise of antimicrobial resistance. The structure-function relationship of the isolated bioactive compounds from these isolates are the major focus of future research.


Sign in / Sign up

Export Citation Format

Share Document