antagonistic activity
Recently Published Documents


TOTAL DOCUMENTS

1515
(FIVE YEARS 528)

H-INDEX

60
(FIVE YEARS 7)

Author(s):  
H.V. Parmar ◽  
N.M. Gohel

Background: Chickpea wilt complex caused by several soil-borne pathogens is the major yield-reducing malady worldwide. Biological control is one of the best, low-cost and ecologically sustainable method for managing plant diseases caused by soil-borne pathogens. Methods: In this present investigation Panchagavya and Trichoderma spp. were evaluated by following poisoned food technique and dual culture technique against wilt complex causing pathogens i.e. Fusarium oxysporum f. sp. ciceri, Fusarium solani and Macrophomina phaseolina. Result: Among the different isolates of Trichoderma spp. evaluated, Trichoderma viride (AAU isolate) was highly antagonistic to F. oxysporum f. sp. ciceri (52.78%) and F. solani (65.37%) whereas, Trichoderma asperellum (AAU isolate) was highly antagonistic to M. phaseolina (65.93%). Panchagavya at the highest concentration (50%) showed significantly higher efficacy (80.74, 66.62 and 49.67%) in inhibiting the mycelial growth of all three pathogens and at the lowest concentration it was moderately effective.


Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 86
Author(s):  
Izabela Podgórska-Kryszczuk ◽  
Ewa Solarska ◽  
Monika Kordowska-Wiater

The genus Fusarium is considered to be one of the most pathogenic, phytotoxic and toxin-producing group of microorganisms in the world. Plants infected by these fungi are characterized by a reduced consumer and commercial value, mainly due to the contamination of crops with mycotoxins. Therefore, effective methods of reducing fungi of the genus Fusarium must be implemented already in the field before harvesting, especially with alternative methods to pesticides such as biocontrol. In this study we identified yeasts that inhibit the growth of the pathogenic fungi Fusarium culmorum, F. graminearum and F. poae. Tested yeasts came from different culture collections, or were obtained from organic and conventional cereals. The greater number of yeast isolates from organic cereals showed antagonistic activity against fungi of the genus Fusarium compared to isolates from the conventional cultivation system. Cryptococcus carnescens (E22) isolated from organic wheat was the only isolate that limited the mycelial growth of all three tested fungi and was the best antagonist against F. poae. Selected yeasts showed various mechanisms of action against fungi, including competition for nutrients and space, production of volatile metabolites, reduction of spore germination, production of siderophores or production of extracellular lytic enzymes: chitinase and β-1,3-glucanase. Of all the investigated mechanisms of yeast antagonism against Fusarium, competition for nutrients and the ability to inhibit spore germination prevailed.


Author(s):  
Haris Butt ◽  
Kubilay Kurtulus Bastas

Fire blight, affecting more than one hundred and thirty species in the Rosaceae, is probably the most destructive disease affecting pear and apple cultivars in many countries. Currently, there are no effective synthetic compounds with systemic properties. Other major problem is the occurrence and spread of strains of Erwinia amylovora with resistance to streptomycin and copper. Taken into consideration the human and environmental health, the use of biocontrol agents either as an alternative or as a supplement within an integrated fire blight management strategy has attracted worldwide attention. In this study, E. amylovora solution of 107 CFU ml-1 was treated with bio-control agents, Bacillus subtilis str. QST 713, B. amyloliquefaciens str. MBI 600 and their mixture (at solution densities of 106, 107 and 108 CFU ml-1 for each one) on Petri dishes, containing King’s B medium and, compared with positive (streptomycin sulphate) and negative (sterile distilled water) controls. In vivo studies were performed on two-year-old apple cv. Gala seedlings grown in 45-cm-diameter pots containing a sterilized mix of soil–sand–peat under controlled greenhouse conditions (85% relative humidity, 25°C temperature and 16h of day light). The plants were irrigated as needed by drip-irrigation and each pot received a mineral solution (NPK: 20–20–20) at 2 g l-1 twice. When plant shoots reached a length of 30-35 cm, bio-control agents, individually and their mixture, were applied to the plants by a hand-sprayer. Obtaining the data, 108 CFU ml-1 of Bacillus spp. suspension mixture showed strongest in vitro antibacterial effect (26mm) among the tested treatments after positive control streptomycin (28.6mm). Parallel to in vitro findings, the mixture was most effective against the pathogen on cv. Gala (66.03%). Findings show that the use of mixture of beneficial microorganisms with individual antagonistic properties against the pathogen can be an effective strategy as a natural alternative to agrochemicals in the scope of good agriculture practices.


2022 ◽  
Vol 951 (1) ◽  
pp. 012021
Author(s):  
Muzakir ◽  
Hifnalisa ◽  
J. Jauharlina ◽  
Rina Sriwati

Abstract The objective of this research was to determine the antagonistic activity of Trichoderma spp. isolated from patchouli rhizosphere (Pogostemon cablin Benth.). Another objective was to perform antagonistic screening of these fungi to inhibit the growth of the wilted pathogen Fusarium spp. In vitro research was conducted in the Laboratory of Plant Pathology, Universitas Syiah Kuala, from January to June 2020. The study used a completely randomised design with five treatments and three replications. The antagonistic screening was carried out by using the dual culture method of Trichoderma spp. against Fusarium spp. with the medium of Potato Dextrose Agar (PDA). The result showed that five isolates of Trichoderma have different antagonistic percentages in inhibiting the Fusarium. The highest antagonistic activity was found from isolate 2 and the lowest value was shown by isolate 3.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Nada K. Alharbi ◽  
Albandary Nasser Alsaloom

The objectives of this study were the selection of lactic acid bacteria (LAB) isolated from raw milk and studying their technological properties and antibacterial activities against bacteria as the cause of cattle mastitis. Biochemical and molecular identification using 16S–23S rRNA gene spacer analysis and 16S rRNA gene sequencing highlighted the presence of three species: Lactiplantibacillus plantarum, Lactococcus lactis, and Levilactobacillus brevis. The enzymatic characterization followed by the determination of technofunctional properties showed that LAB strains did not exhibit any hemolytic effect and were able to produce protease and lipase enzymes. Isolates showed very high antagonistic activity against Gram-positive and Gram-negative bacteria by producing H2O2, bacteriocin(s), and organic acid(s). APIZYM micromethod demonstrated that all selected strains are capable of producing valine arylamidase, cystine arylamidase, N-acetyl-β-glucosaminidase, and ᾳ-mannosidase. The antibiotic susceptibility assay showed that all selected strains were sensible to the majority of tested antibiotics. Based on these results, it can be concluded that the technological properties of the selected LAB allow considering their industrial use in order to formulate bioactive functional foods or drug(s).


2021 ◽  
Vol 37 ◽  
pp. e37089
Author(s):  
Mark Paul Selda Rivarez ◽  
Elizabeth P. Parac ◽  
Niño R. Laurel ◽  
Benjamin V. Cunanan ◽  
Angelie B. Magarro ◽  
...  

Anthracnose is a foliar and fruit disease caused by Colletotrichum spp. affecting a wide range of crops. Infection occurs early followed by quiescence in fruits, such as in banana, where chemical-based pesticides are used as a dependable fungal control for many years. There is an increasing need for a safe control and as implicated in the Organic Agriculture Act of 2010 (RA 10068) in the Philippines. This scenario drove the use of alternative pest control such as the use of biologicals and natural products. In this study, seven bacteria were isolated from wild honey, produced by Apis mellifera, wherein four (BC2, BC3, BC6 and BC7) were found to be an effective antagonist against Colletotrichum musae in in vitro conditions. These bacteria were identified to belong to the genus Lactobacillus spp. (BC2, BC3, BC7) and Bacillus spp. (BC6) based on sugar utilization tests, morphological and cultural growth in PDPA. For the in vivo test, different dilutions of wild honey were used and it was found out that lower concentrations were effective as biopesticide spray to prevent anthracnose infection. Lastly, we report herewith the first isolation of bacteria with biological control potential from wild honey, and to apply the raw or natural product as biopesticide in postharvest fruits.


2021 ◽  
Vol 52 (6) ◽  
pp. 1508-1515
Author(s):  
B. Yasin ◽  
O. Omer Ali ◽  
T. Sulaiman Rashid

Root diseases are one of the main forest nursery problems that have a significant impact on forest production which are caused by Fusarium solani. Rhizobacteria from healthy forest soils were isolated and screened in streak method to select antagonistic strains against F. solani. Two isolates showed high antagonistic activity and molecularly identified as Paenibacillus sp. and Pseudomonas sp. The capability of the Paenibacillus sp. and Pseudomonas sp. were tested in greenhouse plastic containers experiments against F. solani. Soil bacterization with Paenibacillus sp. and Pseudomonas sp. significantly protected thuja seedlings from F. solani compared to the untreated control seedlings. The containers added by Paenibacillus sp. and pseudomonas sp. are also showed plant growth promotion including shoot length, root length, dry and wet weights of the seedlings as well as the chlorophyll contents of the thuja seedlings compared to the untreated control plants. In this research it has been showing that the rhizobacterial treatments have potential to decrease the effect of fungal disease severity, promoting the plant growth and also helps plants to maintain a good health. 


2021 ◽  
Author(s):  
Liviana Ricci ◽  
Joanna Mackie ◽  
Gillian E Donachie ◽  
Ambre Chapuis ◽  
Kristyna Mezerova ◽  
...  

The human gut microbiota protects the host from invading pathogens and the overgrowth of indigenous opportunistic species via mechanisms such as competition for nutrients and by production of antimicrobial compounds. Here, we investigated the antagonist activity of human gut bacteria towards Candida albicans, an opportunistic fungal pathogen that can cause severe infections and mortality in susceptible patients. Co-culture batch incubations of C. albicans in the presence of faecal microbiota from six different healthy individuals revealed varying levels of inhibitory activity against C. albicans. 16S rRNA gene sequence profiling of these faecal co-culture bacterial communities showed that the Bifidobacteriaceae family, and Bifidobacterium adolescentis in particular, were most correlated with antagonistic activity against C. albicans. Follow up mechanistic studies confirmed that culture supernatants of Bifidobacterium species, particularly B. adolescentis, inhibited C. albicans in vitro under both aerobic and anaerobic conditions. Production of the fermentation acids acetate and lactate, together with the concomitant decrease in pH, were strong drivers of the inhibitory activity. Bifidobacteria may therefore represent attractive targets for the development of probiotics and prebiotic interventions tailored to enhance inhibitory activity against C. albicans in vivo.


Sign in / Sign up

Export Citation Format

Share Document