scholarly journals The dependence of neuronal encoding efficiency on Hebbian plasticity and homeostatic regulation of neurotransmitter release

Author(s):  
Faramarz Faghihi ◽  
Ahmed A. Moustafa
2020 ◽  
Vol 117 (41) ◽  
pp. 25830-25839
Author(s):  
Beril Kiragasi ◽  
Pragya Goel ◽  
Sarah Perry ◽  
Yifu Han ◽  
Xiling Li ◽  
...  

Presynaptic glutamate receptors (GluRs) modulate neurotransmitter release and are physiological targets for regulation during various forms of plasticity. Although much is known about the auxiliary subunits associated with postsynaptic GluRs, far less is understood about presynaptic auxiliary GluR subunits and their functions. At theDrosophilaneuromuscular junction, a presynaptic GluR,DKaiR1D, localizes near active zones and operates as an autoreceptor to tune baseline transmission and enhance presynaptic neurotransmitter release in response to diminished postsynaptic GluR functionality, a process referred to as presynaptic homeostatic potentiation (PHP). Here, we identify an auxiliary subunit that collaborates with DKaiR1D to promote these synaptic functions. This subunit, dSol-1, is the homolog of theCaenorhabditis elegansCUB (Complement C1r/C1s, Uegf, Bmp1) domain protein Sol-1. We find thatdSol-1functions in neurons to facilitate baseline neurotransmission and to enable PHP expression, properties shared withDKaiR1D. Intriguingly, presynaptic overexpression ofdSol-1is sufficient to enhance neurotransmitter release through aDKaiR1D-dependent mechanism. Furthermore,dSol-1is necessary to rapidly increase the abundance of DKaiR1D receptors near active zones during homeostatic signaling. Together with recent work showing the CUB domain protein Neto2 is necessary for the homeostatic modulation of postsynaptic GluRs in mammals, our data demonstrate that dSol-1 is required for the homeostatic regulation of presynaptic GluRs. Thus, we propose that CUB domain proteins are fundamental homeostatic modulators of GluRs on both sides of the synapse.


1998 ◽  
Vol 33 ◽  
pp. 29-41 ◽  
Author(s):  
Giampietro Schiavo ◽  
Gudrun Stenbeck

Sign in / Sign up

Export Citation Format

Share Document