scholarly journals Distinct Synchronous Network Activity During the Second Postnatal Week of Medial Entorhinal Cortex Development

2020 ◽  
Vol 14 ◽  
Author(s):  
Julia Dawitz ◽  
Tim Kroon ◽  
J. J. Johannes Hjorth ◽  
Huib D. Mansvelder ◽  
Rhiannon M. Meredith
2020 ◽  
Vol 40 (44) ◽  
pp. 8413-8425
Author(s):  
Andrei Rozov ◽  
Märt Rannap ◽  
Franziska Lorenz ◽  
Azat Nasretdinov ◽  
Andreas Draguhn ◽  
...  

2013 ◽  
Vol 37 (8) ◽  
pp. 1242-1247 ◽  
Author(s):  
Elizabeth W. Mayne ◽  
Michael T. Craig ◽  
Chris J. McBain ◽  
Ole Paulsen

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Roberto de Filippo ◽  
Benjamin R Rost ◽  
Alexander Stumpf ◽  
Claire Cooper ◽  
John J Tukker ◽  
...  

Serotonin (5-HT) is one of the major neuromodulators present in the mammalian brain and has been shown to play a role in multiple physiological processes. The mechanisms by which 5-HT modulates cortical network activity, however, are not yet fully understood. We investigated the effects of 5-HT on slow oscillations (SOs), a synchronized cortical network activity universally present across species. SOs are observed during anesthesia and are considered to be the default cortical activity pattern. We discovered that (±)3,4-methylenedioxymethamphetamine (MDMA) and fenfluramine, two potent 5-HT releasers, inhibit SOs within the entorhinal cortex (EC) in anesthetized mice. Combining opto- and pharmacogenetic manipulations with in vitro electrophysiological recordings, we uncovered that somatostatin-expressing (Sst) interneurons activated by the 5-HT2A receptor (5-HT2AR) play an important role in the suppression of SOs. Since 5-HT2AR signaling is involved in the etiology of different psychiatric disorders and mediates the psychological effects of many psychoactive serotonergic drugs, we propose that the newly discovered link between Sst interneurons and 5-HT will contribute to our understanding of these complex topics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Caitlin S. Mallory ◽  
Kiah Hardcastle ◽  
Malcolm G. Campbell ◽  
Alexander Attinger ◽  
Isabel I. C. Low ◽  
...  

AbstractNeural circuits generate representations of the external world from multiple information streams. The navigation system provides an exceptional lens through which we may gain insights about how such computations are implemented. Neural circuits in the medial temporal lobe construct a map-like representation of space that supports navigation. This computation integrates multiple sensory cues, and, in addition, is thought to require cues related to the individual’s movement through the environment. Here, we identify multiple self-motion signals, related to the position and velocity of the head and eyes, encoded by neurons in a key node of the navigation circuitry of mice, the medial entorhinal cortex (MEC). The representation of these signals is highly integrated with other cues in individual neurons. Such information could be used to compute the allocentric location of landmarks from visual cues and to generate internal representations of space.


2021 ◽  
pp. 113259
Author(s):  
Jena B. Hales ◽  
Nicole T. Reitz ◽  
Jonathan L. Vincze ◽  
Amber C. Ocampo ◽  
Stefan Leutgeb ◽  
...  

2019 ◽  
Vol 15 ◽  
pp. P598-P598
Author(s):  
Heechul Jun ◽  
Shogo Soma ◽  
Ananya Dasgupta ◽  
Kei Igarashi

2010 ◽  
Vol 30 (46) ◽  
pp. 15695-15699 ◽  
Author(s):  
M. M. Sauvage ◽  
Z. Beer ◽  
M. Ekovich ◽  
L. Ho ◽  
H. Eichenbaum

1993 ◽  
Vol 70 (1) ◽  
pp. 144-157 ◽  
Author(s):  
R. Klink ◽  
A. Alonso

1. Layer II of the medial entorhinal cortex is composed of two electrophysiologically and morphologically distinct types of projection neurons: stellate cells (SCs), which are distinguished by rhythmic subthreshold oscillatory activity, and non-SCs. The ionic mechanisms underlying their differential electroresponsiveness, particularly in the subthreshold range of membrane potentials, were investigated in an "in vitro" slice preparation. 2. In both SCs and non-SCs, the apparent membrane input resistance was markedly voltage dependent, respectively decreasing or increasing at hyperpolarized or subthreshold depolarized potential levels. Thus the neurons displayed inward rectification in the hyperpolarizing and depolarizing range. 3. In the depolarizing range, inward rectification was blocked by tetrodotoxin (TTX, 1 microM) in both types of neurons and thus shown to depend on the presence of a persistent low-threshold Na+ conductance (gNap). However, in the presence of TTX, pronounced outward rectification became manifest in the subthreshold depolarizing range of membrane potentials (positive to -60 mV) in the SCs but not in the non-SCs. 4. The rhythmic subthreshold membrane potential oscillations that were present only in the SCs were abolished by TTX and not by Ca2+ conductance block with Cd2+ or Co2+. Subthreshold oscillations thus rely on the activation of voltage-gated Na+, and not Ca2+, conductances. The Ca2+ conductance block also had no effect on the subthreshold outward rectification. 5. Prominent time-dependent inward rectification in the hyperpolarizing range in the SCs persisted after Na(+)- and Ca2+ conductance block. This rectification was not affected by Ba2+ (1 mM), but was blocked by Cs+ (1-4 mM). Therefore, it is most probably generated by a hyperpolarization-activated cationic current (Q-like current). However, the Q-like current appears to play no major role in the generation of subthreshold rhythmic membrane potential oscillations, because these persisted in the presence of Cs+. 6. On the other hand, in the SCs, the fast, sustained, outward rectification that strongly developed (after Na+ conductance block) at the oscillatory voltage level was not affected by Cs+ but was blocked by Ba2+ (1 mM). Barium was also effective in blocking the subthreshold membrane potential oscillations. 7. In the non-SCs, which do not generate subthreshold rhythmic membrane potential oscillations or manifest subthreshold outward rectification in TTX, Ca2+ conductance block abolished spike repolarization and caused the development of long-lasting Na(+)-dependent plateau potentials at a high suprathreshold voltage level. At this level, where prominent delayed rectification is present, the Na+ plateaus sustained rhythmic membrane potential oscillations.(ABSTRACT TRUNCATED AT 400 WORDS)


2015 ◽  
Vol 42 (11) ◽  
pp. 2974-2984 ◽  
Author(s):  
Yusuke Tsuno ◽  
George W. Chapman ◽  
Michael E. Hasselmo

Sign in / Sign up

Export Citation Format

Share Document