scholarly journals A Long-Term Enriched Environment Ameliorates the Accelerated Age-Related Memory Impairment Induced by Gestational Administration of Lipopolysaccharide: Role of Plastic Mitochondrial Quality Control

2021 ◽  
Vol 14 ◽  
Author(s):  
Zhan-Qiang Zhuang ◽  
Zhe-Zhe Zhang ◽  
Yue-Ming Zhang ◽  
He-Hua Ge ◽  
Shi-Yu Sun ◽  
...  

Studies have shown that gestational inflammation accelerates age-related memory impairment in mother mice. An enriched environment (EE) can improve age-related memory impairment, whereas mitochondrial dysfunction has been implicated in the pathogenesis of brain aging. However, it is unclear whether an EE can counteract the accelerated age-related memory impairment induced by gestational inflammation and whether this process is associated with the disruption of mitochondrial quality control (MQC) processes. In this study, CD-1 mice received daily intraperitoneal injections of lipopolysaccharide (LPS, 50 μg/kg) or normal saline (CON group) during gestational days 15–17 and were separated from their offspring at the end of normal lactation. The mothers that received LPS were divided into LPS group and LPS plus EE (LPS-E) treatment groups based on whether the mice were exposed to an EE until the end of the experiment. At 6 and 18 months of age, the Morris water maze test was used to evaluate spatial learning and memory abilities. Quantitative reverse transcription polymerase chain reaction and Western blot were used to measure the messenber RNA (mRNA) and protein levels of MQC-related genes in the hippocampus, respectively. The results showed that all the aged (18 months old) mice underwent a striking decline in spatial learning and memory performances and decreased mRNA/protein levels related to mitochondrial dynamics (Mfn1/Mfn2, OPA1, and Drp1), biogenesis (PGC-1α), and mitophagy (PINK1/parkin) in the hippocampi compared with the young (6 months old) mice. LPS treatment exacerbated the decline in age-related spatial learning and memory and enhanced the reduction in the mRNA and protein levels of MQC-related genes but increased the levels of PGC-1α in young mice. Exposure to an EE could alleviate the accelerated decline in age-related spatial learning and memory abilities and the accelerated changes in MQC-related mRNA or protein levels resulting from LPS treatment, especially in aged mice. In conclusion, long-term exposure to an EE can counteract the accelerated age-related spatial cognition impairment modulated by MQC in CD-1 mother mice that experience inflammation during pregnancy.

2006 ◽  
Vol 189 (3) ◽  
pp. 617-627 ◽  
Author(s):  
J Svensson ◽  
M Diez ◽  
J Engel ◽  
C Wass ◽  
Å Tivesten ◽  
...  

IGF-I is a neuroprotective hormone, and neurodegenerative disorders, including Alzheimer’s disease, have been associated with decreased serum IGF-I concentration. In this study, IGF-I production was inactivated in the liver of adult mice (LI-IGF-I−/−), resulting in an approximately 80–85% reduction of circulating IGF-I concentrations. In young (6-month-old) mice there was no difference between the LI-IGF-I−/− and the control mice in spatial learning and memory as measured using the Morris water maze test. In old (aged 15 and 18 months) LI-IGF-I−/− mice, however, the acquisition of the spatial task was slower than in the controls. Furthermore, impaired spatial working as well as reference memory was observed in the old LI-IGF−/− mice. Histochemical analyses revealed an increase in dynorphin and enkephalin immunoreactivities but decreased mRNA levels in the hippocampus of old LI-IGF-I−/− mice. These mice also displayed astrocytosis and increased metabotropic glutamate receptor 7a-immunoreactivity. These neurochemical disturbances suggest synaptic dysfunction and early neurodegeneration in old LI-IGF-I−/− mice. The decline in serum IGF-I with increasing age may therefore be important for the age-related decline in memory function.


2019 ◽  
Vol 67 (32) ◽  
pp. 9039-9049 ◽  
Author(s):  
Bowen Li ◽  
Yueting Ge ◽  
Yuncong Xu ◽  
Yipin Lu ◽  
Yuhui Yang ◽  
...  

Lipids ◽  
2014 ◽  
Vol 49 (9) ◽  
pp. 855-869 ◽  
Author(s):  
Nursiati Mohamad Taridi ◽  
Nazirah Abd Rani ◽  
Azian Abd Latiff ◽  
Wan Zurinah Wan Ngah ◽  
Musalmah Mazlan

2019 ◽  
Vol 44 (12) ◽  
pp. 1267-1275 ◽  
Author(s):  
Zeinab Rezaee ◽  
Sayed Mohammad Marandi ◽  
Hojjatallah Alaei ◽  
Fahimeh Esfarjani

Parkinson’s disease is characterized by neurodegeneration and learning deficiency. Physical exercise can alleviate these symptoms by increasing the expression of some effective and relevant factors. The preventive effect of 16-week treadmill running in a rat model of Parkinson’s disease, before 6-hydroxydopamine (6-OHDA) induction, was assessed. Experimental groups consisted of sedentary (SED), SED+6-OHDA, exercised (EX), and EX+6-OHDA rats. Forty-eight hours after the last session of exercise, 6-OHDA was injected into the medial forebrain bundle (MFB). One week after the injection, behavioral tests, including spatial learning and memory, were assessed through Morris water maze (MWM) and apomorphine-induced rotation. Three weeks after the injection, mRNA expression and protein levels of the transcriptional co-activator peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α), fibronectin type III domain-containing protein 5 (FNDC5), brain-derived neurotrophic factor (BDNF), and tyrosine hydroxylase (TH) were measured in the striatum and the hippocampus of rats by applying real-time PCR and Western blotting. The findings indicate that exposure to 6-OHDA leads to impairments in behavioral and molecular functions. Exercise training prevents and reduces the symptoms caused by dopamine toxins. The results suggest that treadmill running can exert neuroprotective and have preventive effects to reduce Parkinson’s disease symptoms. Novelty Parkinson’s disease impairs spatial learning and memory. Parkinson’s disease reduced levels of PGC-1α, FNDC5, and BDNF and increased neurodegeneration in the striatum and the hippocampus. Treadmill running before disease attenuated 6-OHDA-induced memory deficit and elevated neuroprotection. Exercise has multiple effects on memory and biochemical factors.


2012 ◽  
Vol 106 (2) ◽  
pp. 278-284 ◽  
Author(s):  
Itzel Nissen ◽  
Felipe S. Estrada ◽  
Alicia T. Nava-Kopp ◽  
Claudine Irles ◽  
Aurora de-la-Peña-Diaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document