scholarly journals cuSCNN: A Secure and Batch-Processing Framework for Privacy-Preserving Convolutional Neural Network Prediction on GPU

2021 ◽  
Vol 15 ◽  
Author(s):  
Yanan Bai ◽  
Quanliang Liu ◽  
Wenyuan Wu ◽  
Yong Feng

The emerging topic of privacy-preserving deep learning as a service has attracted increasing attention in recent years, which focuses on building an efficient and practical neural network prediction framework to secure client and model-holder data privately on the cloud. In such a task, the time cost of performing the secure linear layers is expensive, where matrix multiplication is the atomic operation. Most existing mix-based solutions heavily emphasized employing BGV-based homomorphic encryption schemes to secure the linear layer on the CPU platform. However, they suffer an efficiency and energy loss when dealing with a larger-scale dataset, due to the complicated encoded methods and intractable ciphertext operations. To address it, we propose cuSCNN, a secure and efficient framework to perform the privacy prediction task of a convolutional neural network (CNN), which can flexibly perform on the GPU platform. Its main idea is 2-fold: (1) To avoid the trivia and complicated homomorphic matrix computations brought by BGV-based solutions, it adopts GSW-based homomorphic matrix encryption to efficiently enable the linear layers of CNN, which is a naive method to secure matrix computation operations. (2) To improve the computation efficiency on GPU, a hybrid optimization approach based on CUDA (Compute Unified Device Architecture) has been proposed to improve the parallelism level and memory access speed when performing the matrix multiplication on GPU. Extensive experiments are conducted on industrial datasets and have shown the superior performance of the proposed cuSCNN framework in terms of runtime and power consumption compared to the other frameworks.

2019 ◽  
Vol 481 ◽  
pp. 507-519 ◽  
Author(s):  
Xu Ma ◽  
Xiaofeng Chen ◽  
Xiaoyu Zhang

Author(s):  
Jonathan Asensio ◽  
Wenjie Chen ◽  
Masayoshi Tomizuka

Learning feedforward control based on the available dynamic/kinematic system model and sensor information is generally effective for reducing the tracking error for a learned trajectory. For new trajectories, however, the system cannot benefit from previous learning data and it has to go through the learning process again to regain its performance. In industrial applications, this means production line has to stop for learning, and the overall productivity of the process is compromised. To solve this problem, this paper proposes a feedforward input generation scheme based on neural network (NN) prediction. Learning/training is performed for the NNs for a set of trajectories in advance. Then the feedforward torque input for any trajectory in the predefined workspace can be calculated according to the predicted error from multiple NNs managed with expert logic. Experimental study on a 6-DOF industrial robot has shown the superior performance of the proposed NN based feedforward control scheme in the position tracking as well as the residual vibration reduction, without any further learning or end-effector sensors during operation.


Author(s):  
Naohisa NISHIDA ◽  
Tatsumi OBA ◽  
Yuji UNAGAMI ◽  
Jason PAUL CRUZ ◽  
Naoto YANAI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document