scholarly journals Dual-Threshold-Based Microstate Analysis on Characterizing Temporal Dynamics of Affective Process and Emotion Recognition From EEG Signals

2021 ◽  
Vol 15 ◽  
Author(s):  
Jing Chen ◽  
Haifeng Li ◽  
Lin Ma ◽  
Hongjian Bo ◽  
Frank Soong ◽  
...  

Recently, emotion classification from electroencephalogram (EEG) data has attracted much attention. As EEG is an unsteady and rapidly changing voltage signal, the features extracted from EEG usually change dramatically, whereas emotion states change gradually. Most existing feature extraction approaches do not consider these differences between EEG and emotion. Microstate analysis could capture important spatio-temporal properties of EEG signals. At the same time, it could reduce the fast-changing EEG signals to a sequence of prototypical topographical maps. While microstate analysis has been widely used to study brain function, few studies have used this method to analyze how brain responds to emotional auditory stimuli. In this study, the authors proposed a novel feature extraction method based on EEG microstates for emotion recognition. Determining the optimal number of microstates automatically is a challenge for applying microstate analysis to emotion. This research proposed dual-threshold-based atomize and agglomerate hierarchical clustering (DTAAHC) to determine the optimal number of microstate classes automatically. By using the proposed method to model the temporal dynamics of auditory emotion process, we extracted microstate characteristics as novel temporospatial features to improve the performance of emotion recognition from EEG signals. We evaluated the proposed method on two datasets. For public music-evoked EEG Dataset for Emotion Analysis using Physiological signals, the microstate analysis identified 10 microstates which together explained around 86% of the data in global field power peaks. The accuracy of emotion recognition achieved 75.8% in valence and 77.1% in arousal using microstate sequence characteristics as features. Compared to previous studies, the proposed method outperformed the current feature sets. For the speech-evoked EEG dataset, the microstate analysis identified nine microstates which together explained around 85% of the data. The accuracy of emotion recognition achieved 74.2% in valence and 72.3% in arousal using microstate sequence characteristics as features. The experimental results indicated that microstate characteristics can effectively improve the performance of emotion recognition from EEG signals.

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5135
Author(s):  
Ngoc-Dau Mai ◽  
Boon-Giin Lee ◽  
Wan-Young Chung

In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these electrodes were placed in the frontal lobe, and the other six electrodes were placed in the temporal lobe. We performed experiments on eight subjects while they watched emotive videos. Six entropy measures were employed for extracting suitable features from the EEG signals. Next, we evaluated our proposed models using three popular classifiers: a support vector machine (SVM), multi-layer perceptron (MLP), and one-dimensional convolutional neural network (1D-CNN) for emotion classification; both subject-dependent and subject-independent strategies were used. Our experiment results showed that the highest average accuracies achieved in the subject-dependent and subject-independent cases were 85.81% and 78.52%, respectively; these accuracies were achieved using a combination of the sample entropy measure and 1D-CNN. Moreover, our study investigates the T8 position (above the right ear) in the temporal lobe as the most critical channel among the proposed measurement positions for emotion classification through electrode selection. Our results prove the feasibility and efficiency of our proposed EEG-based affective computing method for emotion recognition in real-world applications.


2020 ◽  
Vol 79 (37-38) ◽  
pp. 27057-27074 ◽  
Author(s):  
Qiang Gao ◽  
Chu-han Wang ◽  
Zhe Wang ◽  
Xiao-lin Song ◽  
En-zeng Dong ◽  
...  

2016 ◽  
Vol 28 (11) ◽  
pp. 3153-3161 ◽  
Author(s):  
Yong Zhang ◽  
Xiaomin Ji ◽  
Bo Liu ◽  
Dan Huang ◽  
Fuding Xie ◽  
...  

2020 ◽  
Vol 163 ◽  
pp. 107224 ◽  
Author(s):  
Varun Bajaj ◽  
Sachin Taran ◽  
Smith K. Khare ◽  
Abdulkadir Sengur

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1631 ◽  
Author(s):  
Dong-Wei Chen ◽  
Rui Miao ◽  
Wei-Qi Yang ◽  
Yong Liang ◽  
Hao-Heng Chen ◽  
...  

Feature extraction of electroencephalography (EEG) signals plays a significant role in the wearable computing field. Due to the practical applications of EEG emotion calculation, researchers often use edge calculation to reduce data transmission times, however, as EEG involves a large amount of data, determining how to effectively extract features and reduce the amount of calculation is still the focus of abundant research. Researchers have proposed many EEG feature extraction methods. However, these methods have problems such as high time complexity and insufficient precision. The main purpose of this paper is to introduce an innovative method for obtaining reliable distinguishing features from EEG signals. This feature extraction method combines differential entropy with Linear Discriminant Analysis (LDA) that can be applied in feature extraction of emotional EEG signals. We use a three-category sentiment EEG dataset to conduct experiments. The experimental results show that the proposed feature extraction method can significantly improve the performance of the EEG classification: Compared with the result of the original dataset, the average accuracy increases by 68%, which is 7% higher than the result obtained when only using differential entropy in feature extraction. The total execution time shows that the proposed method has a lower time complexity.


Sign in / Sign up

Export Citation Format

Share Document