scholarly journals Polarity Sensitivity of Human Auditory Nerve Fibers Based on Pulse Shape, Cochlear Implant Stimulation Strategy and Array

2021 ◽  
Vol 15 ◽  
Author(s):  
Amirreza Heshmat ◽  
Sogand Sajedi ◽  
Anneliese Schrott-Fischer ◽  
Frank Rattay

Neural health is of great interest to determine individual degeneration patterns for improving speech perception in cochlear implant (CI) users. Therefore, in recent years, several studies tried to identify and quantify neural survival in CI users. Among all proposed techniques, polarity sensitivity is a promising way to evaluate the neural status of auditory nerve fibers (ANFs) in CI users. Nevertheless, investigating neural health based on polarity sensitivity is a challenging and complicated task that involves various parameters, and the outcomes of many studies show contradictory results of polarity sensitivity behavior. Our computational study benefits from an accurate three-dimensional finite element model of a human cochlea with realistic human ANFs and determined ANF degeneration pattern of peripheral part with a diminishing of axon diameter and myelination thickness based on degeneration levels. In order to see how different parameters may impact the polarity sensitivity behavior of ANFs, we investigated polarity behavior under the application of symmetric and asymmetric pulse shapes, monopolar and multipolar CI stimulation strategies, and a perimodiolar and lateral CI array system. Our main findings are as follows: (1) action potential (AP) initiation sites occurred mainly in the peripheral site in the lateral system regardless of stimulation strategies, pulse polarities, pulse shapes, cochlear turns, and ANF degeneration levels. However, in the perimodiolar system, AP initiation sites varied between peripheral and central processes, depending on stimulation strategies, pulse shapes, and pulse polarities. (2) In perimodiolar array, clusters formed in threshold values based on cochlear turns and degeneration levels for multipolar strategies only when asymmetric pulses were applied. (3) In the perimodiolar array, a declining trend in polarity (anodic threshold/cathodic threshold) with multipolar strategies was observed between intact or slight degenerated cases and more severe degenerated cases, whereas in the lateral array, cathodic sensitivity was noticed for intact and less degenerated cases and anodic sensitivity for cases with high degrees of degeneration. Our results suggest that a combination of asymmetric pulse shapes, focusing more on multipolar stimulation strategies, as well as considering the distances to the modiolus wall, allows us to distinguish the degeneration patterns of ANFs across the cochlea.

2020 ◽  
Vol 14 ◽  
Author(s):  
Amirreza Heshmat ◽  
Sogand Sajedi ◽  
Lejo Johnson Chacko ◽  
Natalie Fischer ◽  
Anneliese Schrott-Fischer ◽  
...  

2019 ◽  
Vol 380 ◽  
pp. 187-196 ◽  
Author(s):  
Sonia Tabibi ◽  
Andrea Kegel ◽  
Wai Kong Lai ◽  
Ian C. Bruce ◽  
Norbert Dillier

1987 ◽  
Vol 82 (6) ◽  
pp. 1989-2000 ◽  
Author(s):  
Li Deng ◽  
C. Daniel Geisler ◽  
Steven Greenberg

1986 ◽  
Vol 56 (2) ◽  
pp. 261-286 ◽  
Author(s):  
W. S. Rhode ◽  
P. H. Smith

Physiological response properties of neurons in the ventral cochlear nucleus have a variety of features that are substantially different from the stereotypical auditory nerve responses that serve as the principal source of activation for these neurons. These emergent features are the result of the varying distribution of auditory nerve inputs on the soma and dendrites of the various cell types within the nucleus; the intrinsic membrane characteristics of the various cell types causing different responses to the same input in different cell types; and secondary excitatory and inhibitory inputs to different cell types. Well-isolated units were recorded with high-impedance glass microelectrodes, both intracellularly and extracellularly. Units were characterized by their temporal response to short tones, rate vs. intensity relation, and response areas. The principal response patterns were onset, chopper, and primary-like. Onset units are characterized by a well-timed first spike in response to tones at the characteristic frequency. For frequencies less than 1 kHz, onset units can entrain to the stimulus frequency with greater precision than their auditory nerve inputs. This implies that onset units receive converging inputs from a number of auditory nerve fibers. Onset units are divided into three subcategories, OC, OL, and OI. OC units have extraordinarily wide dynamic ranges and low-frequency selectivity. Some are capable of sustaining firing rates of 800 spikes/s at high intensities. They have the smallest standard deviation and coefficient of variation of the first spike latency of any cells in the cochlear nuclei. OC units are candidates for encoding intensity. OI and OL units differ from OC units in that they have dynamic ranges and frequency selectivity ranges much like those of auditory nerve fibers. They differ from one another in their steady-state firing rates; OI units fire mainly at the onset of a tone. OI units also differ from OL units in that they prefer frequency sweeps in the low to high direction. Primary-like-with-notch (PLN) units also respond to tones with a well-timed first spike. They differ from onset cells in that the onset peak is not always as precise as the spontaneous rate is higher. A comparison of spontaneous firing rate and saturation firing rate of PLN units with auditory nerve fibers suggest that PLN units receive one to four auditory nerve fiber inputs. Chopper units fire in a sustained regular manner when they are excited by sound.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document