scholarly journals The Mechanical Basis of Memory – the MeshCODE Theory

2021 ◽  
Vol 14 ◽  
Author(s):  
Benjamin T. Goult

One of the major unsolved mysteries of biological science concerns the question of where and in what form information is stored in the brain. I propose that memory is stored in the brain in a mechanically encoded binary format written into the conformations of proteins found in the cell-extracellular matrix (ECM) adhesions that organise each and every synapse. The MeshCODE framework outlined here represents a unifying theory of data storage in animals, providing read-write storage of both dynamic and persistent information in a binary format. Mechanosensitive proteins that contain force-dependent switches can store information persistently, which can be written or updated using small changes in mechanical force. These mechanosensitive proteins, such as talin, scaffold each synapse, creating a meshwork of switches that together form a code, the so-called MeshCODE. Large signalling complexes assemble on these scaffolds as a function of the switch patterns and these complexes would both stabilise the patterns and coordinate synaptic regulators to dynamically tune synaptic activity. Synaptic transmission and action potential spike trains would operate the cytoskeletal machinery to write and update the synaptic MeshCODEs, thereby propagating this coding throughout the organism. Based on established biophysical principles, such a mechanical basis for memory would provide a physical location for data storage in the brain, with the binary patterns, encoded in the information-storing mechanosensitive molecules in the synaptic scaffolds, and the complexes that form on them, representing the physical location of engrams. Furthermore, the conversion and storage of sensory and temporal inputs into a binary format would constitute an addressable read-write memory system, supporting the view of the mind as an organic supercomputer.

Author(s):  
Benjamin T. Goult

One of the major unsolved mysteries of biological science concerns the question of where and in what form information is stored in the brain. I propose that memory is stored in the brain in a mechanically encoded binary format written into the conformations of proteins found in the cell-extracellular matrix adhesions that organise each and every synapse. The MeshCODE framework outlined here represents a unifying theory of data storage in animals, providing read-write storage of both dynamic and persistent information in a binary format. Mechanosensitive proteins that contain force-dependent switches can store information persistently, which can be written or updated using small changes in mechanical force. These mechanosensitive proteins, such as talin, scaffold each synapse, creating a meshwork of switches that together form a code, the so-called MeshCODE. Large signalling complexes assemble on these scaffolds as a function of the switch patterns and these complexes would both stabilise the patterns and coordinate synaptic regulators to dynamically tune synaptic activity. Synaptic transmission and action potential spike trains would operate the cytoskeletal machinery to write and update the synaptic MeshCODEs, thereby propagating this coding throughout the organism. Based on established biophysical principles, such a mechanical basis for memory would provide a physical location for data storage in the brain, with the binary patterns, encoded in the information-storing mechanosensitive molecules in the synaptic scaffolds, and the complexes that form on them, representing the physical location of engrams. Furthermore, the conversion and storage of sensory and temporal inputs into a binary format would constitute an addressable read-write memory system, supporting the view of the mind as an organic supercomputer.


Author(s):  
Benjamin T. Goult

The MeshCODE framework outlined here represents a unifying theory of data storage in animals, providing read/write storage of both dynamic and persistent information in a binary format. Mechanosensitive proteins, that contain force-dependent switches, can store information persistently which can be written/updated using small changes in mechanical force. These mechanosensitive proteins, such as talin, scaffold each and every synapse creating a meshwork of switches that forms a code, a MeshCODE. Synaptic transmission and action potential spike trains would operate the cytoskeletal machinery to write and update the synaptic MeshCODEs, propagating this coding throughout the brain and to the entire organism. Based on established biophysical principles, a mechanical basis for memory provides a physical location for data storage in the brain. Furthermore, the conversion and storage of sensory and temporal inputs into a binary format identifies an addressable read/write memory system supporting the view of the mind as an organic supercomputer.


2010 ◽  
Vol 189 (4) ◽  
pp. 619-629 ◽  
Author(s):  
Pirta Hotulainen ◽  
Casper C. Hoogenraad

Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses and are major sites of information processing and storage in the brain. Changes in the shape and size of dendritic spines are correlated with the strength of excitatory synaptic connections and heavily depend on remodeling of its underlying actin cytoskeleton. Emerging evidence suggests that most signaling pathways linking synaptic activity to spine morphology influence local actin dynamics. Therefore, specific mechanisms of actin regulation are integral to the formation, maturation, and plasticity of dendritic spines and to learning and memory.


2004 ◽  
Vol 49 (6) ◽  
pp. 713-716
Author(s):  
Ellen S. Berscheid
Keyword(s):  
The Mind ◽  

PsycCRITIQUES ◽  
2016 ◽  
Vol 61 (32) ◽  
Author(s):  
Christopher A. Was
Keyword(s):  
The Mind ◽  

2019 ◽  
Author(s):  
vernon thornton

A description of of the mind and its relationship to the brain, set in an evolutionary context. Introduction of a correct version of 'language-of-thought' called 'thinkish'.


Author(s):  
Maryam Hammami ◽  
Hatem Bellaaj

The Cloud storage is the most important issue today. This is due to a rapidly changing needs and a huge mass of varied and important data to back up. In this paper, we describe a work in progress and propose a flexible system architecture for data storage in the Cloud. This system is centered on the Data Manager module. This module provides various functions such as the dispersion of data in fragments, encryption and storage of fragments... etc. This architecture proves to be very relevant. It ensures consistency between different components. On the other hand, it ensures the security and availability of data.


Author(s):  
Marcello Massimini ◽  
Giulio Tononi

This chapter uses thought experiments and practical examples to introduce, in a very accessible way, the hard problem of consciousness. Soon, machines may behave like us to pass the Turing test and scientists may succeed in copying and simulating the inner workings of the brain. Will all this take us any closer to solving the mysteries of consciousness? The reader is taken to meet different kind of zombies, the philosophical, the digital, and the inner ones, to understand why many, scientists and philosophers alike, doubt that the mind–body problem will ever be solved.


Sign in / Sign up

Export Citation Format

Share Document