scholarly journals Germinal Center Cells Turning to the Dark Side: Neoplasms of B Cells, Follicular Helper T Cells, and Follicular Dendritic Cells

2021 ◽  
Vol 10 ◽  
Author(s):  
Rosario Munguía-Fuentes ◽  
Raúl Antonio Maqueda-Alfaro ◽  
Rommel Chacón-Salinas ◽  
Leopoldo Flores-Romo ◽  
Juan Carlos Yam-Puc

Gaining knowledge of the neoplastic side of the three main cells—B cells, Follicular Helper T (Tfh) cells, and follicular dendritic cells (FDCs) —involved in the germinal center (GC) reaction can shed light toward further understanding the microuniverse that is the GC, opening the possibility of better treatments. This paper gives a review of the more complex underlying mechanisms involved in the malignant transformations that take place in the GC. Whilst our understanding of the biology of the GC-related B cell lymphomas has increased—this is not reviewed in detail here—the dark side involving neoplasms of Tfh cells and FDCs are poorly studied, in great part, due to their low incidence. The aggressive behavior of Tfh lymphomas and the metastatic potential of FDCs sarcomas make them clinically relevant, merit further attention and are the main focus of this review. Tfh cells and FDCs malignancies can often be misdiagnosed. The better understanding of these entities linked to their molecular and genetic characterization will lead to prediction of high-risk patients, better diagnosis, prognosis, and treatments based on molecular profiles.

2005 ◽  
Vol 174 (3) ◽  
pp. 1456-1461 ◽  
Author(s):  
Rosa Sacedón ◽  
Blanca Díez ◽  
Vanesa Nuñez ◽  
Carmen Hernández-López ◽  
Cruz Gutierrez-Frías ◽  
...  

Blood ◽  
1996 ◽  
Vol 88 (5) ◽  
pp. 1755-1764 ◽  
Author(s):  
L Airas ◽  
S Jalkanen

Abstract Lymphocyte-vascular adhesion protein-2 was recently identified as CD73. The CD73 molecule, otherwise known as ecto-5′-nucleotidase, is a lymphocyte maturation marker that is involved in intracellular signaling, and lymphocyte proliferation and activation. We now show that CD73, in addition to mediating lymphocyte binding to endothelial cells, also mediates adhesion between B cells and follicular dendritic cells (FDC), as a monoclonal antibody (MoAb) against CD73 inhibited the aggregation of isolated germinal center B cells and FDC in vitro. Cytocentrifuge preparations of isolated germinal center cells and two- color immunofluorescence stainings of different tonsillar B-cell populations show that CD73 is expressed on FDC and on small, recirculating IgD+ B cells, but only on a few B cells inside the germinal center. Thus, we propose that CD73 on FDC has an important role in controlling B cell-FDC interactions and B-cell maturation in germinal centers.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4588-4588
Author(s):  
Jianhong Lin ◽  
Tint Lwin ◽  
Jianjun Zhao ◽  
Jie Zhao ◽  
Luis Crespo ◽  
...  

Abstract Abstract 4588 B-cell differentiation process is tightly regulated by suppression or induction of specific transcription factors. Among various transcriptional regulators, BCL6 and PRDM-1 are master regulators for germinal center (GC) formation and terminal B-cell differentiation. Dysregulation of BCL6 and PRDM-1 have been associated with lymphomagenesis. However how these transcription factors are regulated and what determines their expression are unclear. Given that follicular dendritic cells (FDC) closely interact with B cells within the GC, provide survival signal to protect B cells from apoptosis and are essential for the differentiation of GC B cells, we used an in vitro FDC-B-cell co-culture model to explore the role of FDC-B cell interaction and FDC-induced miRNA in the regulation of BCL6 and PRDM-1 expression. In this study 1) we revealed that follicular dendritic cells (FDCs, HK) regulate expression of transcription factor (BCL6, and PRDM1) via cell-cell contact, 2) we showed that FDCs regulate expression of B-cell survival and differentiation-related microRNAs, 3) we demonstrated that microRNAs regulate expression of transcription factors BCl6 and PRDM1 and 4) we documented that follicular dendritic cells regulate expression of transcription factor (BCL6, and PRDM1) through microRNAs and plays an important role in B-differentiation. These studies establish new molecular mechanisms for regulation of BCL6 and PRDM-1. FDC-induce miRNA mediated down- and up-regulation of transcriptional factors may contribute to the phenotype maintenance of GC, and pathogenesis of non-Hodgkin's lymphoma (NHL) by interfering with normal B-cell terminal differentiation. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document