scholarly journals A Review of Recent and Emerging Approaches for the Clinical Application of Cerenkov Luminescence Imaging

2021 ◽  
Vol 9 ◽  
Author(s):  
Benedict Mc Larney ◽  
Magdalena Skubal ◽  
Jan Grimm

Cerenkov luminescence is a blue-weighted emission of light produced by a vast array of clinically approved radioisotopes and LINAC accelerators. When β particles (emitted during the decay of radioisotopes) are present in a medium such as water or tissue, they are able to travel faster than the speed of light in that medium and in doing so polarize the molecules around them. Once the particle has left the local area, the polarized molecules relax and return to their baseline state releasing the additional energy as light (luminescence). This blue glow has commonly been used to determine the output of nuclear power plant cores and, in recent years, has found traction in the preclinical and clinical imaging field. This brief review will discuss the technology which has enabled the emergence of the biomedical Cerenkov imaging field, recent pre-clinical studies with potential clinical translation of Cerenkov luminescence imaging and the current clinical implementations of the method. Finally, an outlook is given as to the direction in which the field is heading.

2012 ◽  
Vol 11 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Fuminori SAKAMOTO ◽  
Toshihiko OHNUKI ◽  
Naofumi KOZAI ◽  
Shosuke IGARASHI ◽  
Shinya YAMASAKI ◽  
...  

2012 ◽  
Vol 229-231 ◽  
pp. 1106-1109
Author(s):  
Nitin Sharma ◽  
Aman Goel ◽  
Avishek Ghosh ◽  
Abhimanyu Kohli

Mankind’s lax approach towards energy sources during its past years of incessant growth has led to chopping of fossil fuels and done immense harm to the environment. Today we are faced with a challenge to develop eco friendly systems that ensure sustainable development with minimum harm to our fragile surroundings We propose a system consisting a Stirling engine that, using the temperature difference between the condenser inlets and outlets of a power plant (nuclear or thermal), produces power. This will sooth our problems to some extent. In this paper, we will briefly discuss the working of thermal/nuclear power plants in combination with Stirling engine in order to increase the efficiency of conventional power plant systems up to the order of 80% . Above all our system causes lower emissions when compared to the already existing systems since the engine producing power has zero emission. The main advantage of our proposed system is that there will be increase in power production of the existing plants without any further increase in the energy supply. This small auxiliary system working in synchronization with the main system increases the overall efficiency of the plant by increasing the power output without additional energy being expended and also reduces the load on the power plants during peak load requirements.


2021 ◽  
pp. 52-62
Author(s):  
Fuminori SAKAMOTO ◽  
Toshihiko OHNUKI ◽  
Naofumi KOZAI ◽  
Shosuke IGARASHI ◽  
Shinya YAMASAKI ◽  
...  

2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.


Sign in / Sign up

Export Citation Format

Share Document