scholarly journals Contraction-Induced Loss of Plasmalemmal Electrophysiological Function Is Dependent on the Dystrophin Glycoprotein Complex

2021 ◽  
Vol 12 ◽  
Author(s):  
Cory W. Baumann ◽  
Angus Lindsay ◽  
Sylvia R. Sidky ◽  
James M. Ervasti ◽  
Gordon L. Warren ◽  
...  

Weakness and atrophy are key features of Duchenne muscular dystrophy (DMD). Dystrophin is one of the many proteins within the dystrophin glycoprotein complex (DGC) that maintains plasmalemmal integrity and cellular homeostasis. The dystrophin-deficient mdx mouse is also predisposed to weakness, particularly when subjected to eccentric (ECC) contractions due to electrophysiological dysfunction of the plasmalemma. Here, we determined if maintenance of plasmalemmal excitability during and after a bout of ECC contractions is dependent on intact and functional DGCs rather than, solely, dystrophin expression. Wild-type (WT) and dystrophic mice (mdx, mL172H and Sgcb−/− mimicking Duchenne, Becker and Limb-girdle Type 2E muscular dystrophies, respectively) with varying levels of dystrophin and DGC functionality performed 50 maximal ECC contractions with simultaneous torque and electromyographic measurements (M-wave root-mean-square, M-wave RMS). ECC contractions caused all mouse lines to lose torque (p<0.001); however, deficits were greater in dystrophic mouse lines compared to WT mice (p<0.001). Loss of ECC torque did not correspond to a reduction in M-wave RMS in WT mice (p=0.080), while deficits in M-wave RMS exceeded 50% in all dystrophic mouse lines (p≤0.007). Moreover, reductions in ECC torque and M-wave RMS were greater in mdx mice compared to mL172H mice (p≤0.042). No differences were observed between mdx and Sgcb−/− mice (p≥0.337). Regression analysis revealed ≥98% of the variance in ECC torque loss could be explained by the variance in M-wave RMS in dystrophic mouse lines (p<0.001) but not within WT mice (R2=0.211; p=0.155). By comparing mouse lines that had varying amounts and functionality of dystrophin and other DGC proteins, we observed that (1) when all DGCs are intact, plasmalemmal action potential generation and conduction is maintained, (2) deficiency of the DGC protein β-sarcoglycan is as disruptive to plasmalemmal excitability as is dystrophin deficiency and, (3) some functionally intact DGCs are better than none. Our results highlight the significant role of the DGC plays in maintaining plasmalemmal excitability and that a collective synergism (via each DGC protein) is required for this complex to function properly during ECC contractions.

2002 ◽  
Vol 283 (4) ◽  
pp. C1090-C1101 ◽  
Author(s):  
Robert W. Grange ◽  
Thomas G. Gainer ◽  
Krista M. Marschner ◽  
Robert J. Talmadge ◽  
James T. Stull

Loss of the dystrophin-glycoprotein complex from muscle sarcolemma in Duchenne's muscular dystrophy (DMD) renders the membrane susceptible to mechanical injury, leaky to Ca2+, and disrupts signaling, but the precise mechanism(s) leading to the onset of DMD remain unclear. To assess the role of mechanical injury in the onset of DMD, extensor digitorum longus (EDL) muscles from C57 (control), mdx, and mdx-utrophin-deficient [ mdx:utrn(−/−); dystrophic] pups aged 9–12 days were subjected to an acute stretch-injury or no-stretch protocol in vitro. Before the stretches, isometric stress was attenuated for mdx:utrn(−/−) compared with control muscles at all stimulation frequencies ( P< 0.05). During the stretches, EDL muscles for each genotype demonstrated similar mean stiffness values. After the stretches, isometric stress during a tetanus was decreased significantly for both mdx and mdx:utrn(−/−) muscles compared with control muscles ( P < 0.05). Membrane injury assessed by uptake of procion orange dye was greater for dystrophic compared with control EDL ( P < 0.05), but, within each genotype, the percentage of total cells taking up dye was not different for the no-stretch vs. stretch condition. These data suggest that the sarcolemma of maturing dystrophic EDL muscles are resistant to acute mechanical injury.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Mika Kaakinen ◽  
Tuula Kaisto ◽  
Paavo Rahkila ◽  
Kalervo Metsikkö

We examined the distribution of selected raft proteins on the sarcolemma of skeletal myofibers and the role of cholesterol environment in the distribution. Immunofluorescence staining showed that flotillin-1 and influenza hemagglutinin exhibited rafts that located in the domains deficient of the dystrophin glycoprotein complex, but the distribution patterns of the two proteins were different. Cholesterol depletion from the sarcolemma by means of methyl-β-cyclodextrin resulted in distorted caveolar morphology and redistribution of the caveolin 3 protein. Concomitantly, the water permeability of the sarcolemma increased significantly. However, cholesterol depletion did not reshuffle flotillin 1 or hemagglutinin. Furthermore, a hemagglutinin variant that lacked a raft-targeting signals exhibited a similar distribution pattern as the native raft protein. These findings indicate that each raft protein exhibits a strictly defined distribution in the sarcolemma. Only the distribution of caveolin 3 that binds cholesterol was exclusively dependent on cholesterol environment.


1993 ◽  
Vol 3 (5-6) ◽  
pp. 533-535 ◽  
Author(s):  
K. Matsumura ◽  
Kay Ohlendieck ◽  
Victor V. Ionasescu ◽  
Fernando M.S. Tomé ◽  
Ikuya Nonaka ◽  
...  

2000 ◽  
Vol 148 (1) ◽  
pp. 115-126 ◽  
Author(s):  
Terri G. Thompson ◽  
Yiu-Mo Chan ◽  
Andrew A. Hack ◽  
Melissa Brosius ◽  
Michael Rajala ◽  
...  

Mutations in genes encoding for the sarcoglycans, a subset of proteins within the dystrophin–glycoprotein complex, produce a limb-girdle muscular dystrophy phenotype; however, the precise role of this group of proteins in the skeletal muscle is not known. To understand the role of the sarcoglycan complex, we looked for sarcoglycan interacting proteins with the hope of finding novel members of the dystrophin–glycoprotein complex. Using the yeast two-hybrid method, we have identified a skeletal muscle-specific form of filamin, which we term filamin 2 (FLN2), as a γ- and δ-sarcoglycan interacting protein. In addition, we demonstrate that FLN2 protein localization in limb-girdle muscular dystrophy and Duchenne muscular dystrophy patients and mice is altered when compared with unaffected individuals. Previous studies of filamin family members have determined that these proteins are involved in actin reorganization and signal transduction cascades associated with cell migration, adhesion, differentiation, force transduction, and survival. Specifically, filamin proteins have been found essential in maintaining membrane integrity during force application. The finding that FLN2 interacts with the sarcoglycans introduces new implications for the pathogenesis of muscular dystrophy.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Yuka Morikawa ◽  
James F Martin

Regeneration of the mammalian heart is limited in adults. In rodents, endogenous regenerative capacity exists during development and in neonate but is rapidly repressed after birth. We are elucidating the mechanisms responsible for regenerative repression and applying this knowledge to reactivate cardiac regeneration in adult hearts. We have previously shown that the Hippo pathway is responsive for regenerative repression, however, the molecular and cellular mechanism responsible remain unclear. The Hippo pathway controls heart size by repressing myocardial cell proliferation during development. By deleting Salv, a modulator of Hippo pathway, we found myocardial damage in the postnatal and adult heart was repaired anatomically and functionally. This heart repair occurred primarily through proliferation of preexisting cardiomyocyte. We observed that cardiomyocytes in border the zone protrude and fill the damage area during Hippo-mediated cardiac regeneration and thus preventing formation of fibrotic scars. The molecular analysis identified components of dystrophin glycoprotein complex (DGC) as downstream targets of Hippo pathway. The DGC anchors the cytoskeleton and extracellular matrix and is involved in cell migration. The studies using the muscular dystrophy mouse model, mdx, reveals that DGC is required for endogenous cardiac regeneration and cardiomyocyte protrusion. Taken together, we show that cardiomyocyte protrusion is an essential process for cardiac regeneration and the Hippo pathway regulates it through regulating DGC. Our studies provide insights into the mechanisms leading to repair of damaged hearts from endogenous cardiomyocytes and novel information into DGC function.


Sign in / Sign up

Export Citation Format

Share Document