scholarly journals Filamin 2 (FLN2): A Muscle-specific Sarcoglycan Interacting Protein

2000 ◽  
Vol 148 (1) ◽  
pp. 115-126 ◽  
Author(s):  
Terri G. Thompson ◽  
Yiu-Mo Chan ◽  
Andrew A. Hack ◽  
Melissa Brosius ◽  
Michael Rajala ◽  
...  

Mutations in genes encoding for the sarcoglycans, a subset of proteins within the dystrophin–glycoprotein complex, produce a limb-girdle muscular dystrophy phenotype; however, the precise role of this group of proteins in the skeletal muscle is not known. To understand the role of the sarcoglycan complex, we looked for sarcoglycan interacting proteins with the hope of finding novel members of the dystrophin–glycoprotein complex. Using the yeast two-hybrid method, we have identified a skeletal muscle-specific form of filamin, which we term filamin 2 (FLN2), as a γ- and δ-sarcoglycan interacting protein. In addition, we demonstrate that FLN2 protein localization in limb-girdle muscular dystrophy and Duchenne muscular dystrophy patients and mice is altered when compared with unaffected individuals. Previous studies of filamin family members have determined that these proteins are involved in actin reorganization and signal transduction cascades associated with cell migration, adhesion, differentiation, force transduction, and survival. Specifically, filamin proteins have been found essential in maintaining membrane integrity during force application. The finding that FLN2 interacts with the sarcoglycans introduces new implications for the pathogenesis of muscular dystrophy.

2006 ◽  
Vol 290 (2) ◽  
pp. C577-C582 ◽  
Author(s):  
Stefania Assereto ◽  
Silvia Stringara ◽  
Federica Sotgia ◽  
Gloria Bonuccelli ◽  
Aldobrando Broccolini ◽  
...  

In this report, we have developed a novel method to identify compounds that rescue the dystrophin-glycoprotein complex (DGC) in patients with Duchenne or Becker muscular dystrophy. Briefly, freshly isolated skeletal muscle biopsies (termed skeletal muscle explants) from patients with Duchenne or Becker muscular dystrophy were maintained under defined cell culture conditions for a 24-h period in the absence or presence of a specific candidate compound. Using this approach, we have demonstrated that treatment with a well-characterized proteasome inhibitor, MG-132, is sufficient to rescue the expression of dystrophin, β-dystroglycan, and α-sarcoglycan in skeletal muscle explants from patients with Duchenne or Becker muscular dystrophy. These data are consistent with our previous findings regarding systemic treatment with MG-132 in a dystrophin-deficient mdx mouse model (Bonuccelli G, Sotgia F, Schubert W, Park D, Frank PG, Woodman SE, Insabato L, Cammer M, Minetti C, and Lisanti MP. Am J Pathol 163: 1663–1675, 2003). Our present results may have important new implications for the possible pharmacological treatment of Duchenne or Becker muscular dystrophy in humans.


2008 ◽  
Vol 294 (2) ◽  
pp. C627-C640 ◽  
Author(s):  
Jianming Liu ◽  
Dean J. Burkin ◽  
Stephen J. Kaufman

The dystrophin-glycoprotein complex maintains the integrity of skeletal muscle by associating laminin in the extracellular matrix with the actin cytoskeleton. Several human muscular dystrophies arise from defects in the components of this complex. The α7β1-integrin also binds laminin and links the extracellular matrix with the cytoskeleton. Enhancement of α7-integrin levels alleviates pathology in mdx/utrn−/− mice, a model of Duchenne muscular dystrophy, and thus the integrin may functionally compensate for the absence of dystrophin. To test whether increasing α7-integrin levels affects transcription and cellular functions, we generated α7-integrin-inducible C2C12 cells and transgenic mice that overexpress the integrin in skeletal muscle. C2C12 myoblasts with elevated levels of integrin exhibited increased adhesion to laminin, faster proliferation when serum was limited, resistance to staurosporine-induced apoptosis, and normal differentiation. Transgenic expression of eightfold more integrin in skeletal muscle did not result in notable toxic effects in vivo. Moreover, high levels of α7-integrin in both myoblasts and in skeletal muscle did not disrupt global gene expression profiles. Thus increasing integrin levels can compensate for defects in the extracellular matrix and cytoskeleton linkage caused by compromises in the dystrophin-glycoprotein complex without triggering apparent overt negative side effects. These results support the use of integrin enhancement as a therapy for muscular dystrophy.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Francesca Sciandra ◽  
Maria Giulia Bigotti ◽  
Bruno Giardina ◽  
Manuela Bozzi ◽  
Andrea Brancaccio

In skeletal muscle, dystroglycan (DG) is the central component of the dystrophin-glycoprotein complex (DGC), a multimeric protein complex that ensures a strong mechanical link between the extracellular matrix and the cytoskeleton. Several muscular dystrophies arise from mutations hitting most of the components of the DGC. Mutations within the DG gene (DAG1) have been recently associated with two forms of muscular dystrophy, one displaying a milder and one a more severe phenotype. This review focuses specifically on the animal (murine and others) model systems that have been developed with the aim of directly engineeringDAG1in order to study the DG function in skeletal muscle as well as in other tissues. In the last years, conditional animal models overcoming the embryonic lethality of the DG knock-out in mouse have been generated and helped clarifying the crucial role of DG in skeletal muscle, while an increasing number of studies on knock-in mice are aimed at understanding the contribution of single amino acids to the stability of DG and to the possible development of muscular dystrophy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cory W. Baumann ◽  
Angus Lindsay ◽  
Sylvia R. Sidky ◽  
James M. Ervasti ◽  
Gordon L. Warren ◽  
...  

Weakness and atrophy are key features of Duchenne muscular dystrophy (DMD). Dystrophin is one of the many proteins within the dystrophin glycoprotein complex (DGC) that maintains plasmalemmal integrity and cellular homeostasis. The dystrophin-deficient mdx mouse is also predisposed to weakness, particularly when subjected to eccentric (ECC) contractions due to electrophysiological dysfunction of the plasmalemma. Here, we determined if maintenance of plasmalemmal excitability during and after a bout of ECC contractions is dependent on intact and functional DGCs rather than, solely, dystrophin expression. Wild-type (WT) and dystrophic mice (mdx, mL172H and Sgcb−/− mimicking Duchenne, Becker and Limb-girdle Type 2E muscular dystrophies, respectively) with varying levels of dystrophin and DGC functionality performed 50 maximal ECC contractions with simultaneous torque and electromyographic measurements (M-wave root-mean-square, M-wave RMS). ECC contractions caused all mouse lines to lose torque (p<0.001); however, deficits were greater in dystrophic mouse lines compared to WT mice (p<0.001). Loss of ECC torque did not correspond to a reduction in M-wave RMS in WT mice (p=0.080), while deficits in M-wave RMS exceeded 50% in all dystrophic mouse lines (p≤0.007). Moreover, reductions in ECC torque and M-wave RMS were greater in mdx mice compared to mL172H mice (p≤0.042). No differences were observed between mdx and Sgcb−/− mice (p≥0.337). Regression analysis revealed ≥98% of the variance in ECC torque loss could be explained by the variance in M-wave RMS in dystrophic mouse lines (p<0.001) but not within WT mice (R2=0.211; p=0.155). By comparing mouse lines that had varying amounts and functionality of dystrophin and other DGC proteins, we observed that (1) when all DGCs are intact, plasmalemmal action potential generation and conduction is maintained, (2) deficiency of the DGC protein β-sarcoglycan is as disruptive to plasmalemmal excitability as is dystrophin deficiency and, (3) some functionally intact DGCs are better than none. Our results highlight the significant role of the DGC plays in maintaining plasmalemmal excitability and that a collective synergism (via each DGC protein) is required for this complex to function properly during ECC contractions.


2006 ◽  
Vol 290 (2) ◽  
pp. C411-C419 ◽  
Author(s):  
Elisabeth R. Barton

Loss of the dystrophin glycoprotein complex (DGC) or a subset of its components can lead to muscular dystrophy. However, the patterns of symptoms differ depending on which proteins are affected. Absence of dystrophin leads to loss of the entire DGC and is associated with susceptibility to contractile injury. In contrast, muscles lacking γ-sarcoglycan (γ-SG) display little mechanical fragility and still develop severe pathology. Animals lacking dystrophin or γ-SG were used to identify DGC components critical for sensing dynamic mechanical load. Extensor digitorum longus muscles from 7-wk-old normal (C57), dystrophin- null ( mdx), and γ-SG-null ( gsg−/−) mice were subjected to a series of eccentric contractions, after which ERK1/2 phosphorylation levels were determined. At rest, both dystrophic strains had significantly higher ERK1 phosphorylation, and gsg−/− muscle also had heightened ERK2 phosphorylation compared with wild-type controls. Eccentric contractions produced a significant and transient increase in ERK1/2 phosphorylation in normal muscle, whereas the mdx strain displayed no significant proportional change of ERK1/2 phosphorylation after eccentric contraction. Muscles from gsg−/− mice had no significant increase in ERK1 phosphorylation; however, ERK2 phosphorylation was more robust than in C57 controls. The reduction in mechanically induced ERK1 phosphorylation in gsg−/− muscle was not dependent on age or severity of phenotype, because muscle from both young and old (age 20 wk) animals exhibited a reduced response. Immunoprecipitation experiments revealed that γ-SG was phosphorylated in normal muscle after eccentric contractions, indicating that members of the DGC are modified in response to mechanical perturbation. This study provides evidence that the SGs are involved in the transduction of mechanical information in skeletal muscle, potentially unique from the entire DGC.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1206
Author(s):  
Tateki Kikuchi

The etiology of chicken muscular dystrophy is the synthesis of aberrant WW domain containing E3 ubiquitin-protein ligase 1 (WWP1) protein made by a missense mutation of WWP1 gene. The β-dystroglycan that confers stability to sarcolemma was identified as a substrate of WWP protein, which induces the next molecular collapse. The aberrant WWP1 increases the ubiquitin ligase-mediated ubiquitination following severe degradation of sarcolemmal and cytoplasmic β-dystroglycan, and an erased β-dystroglycan in dystrophic αW fibers will lead to molecular imperfection of the dystrophin-glycoprotein complex (DGC). The DGC is a core protein of costamere that is an essential part of force transduction and protects the muscle fibers from contraction-induced damage. Caveolin-3 (Cav-3) and dystrophin bind competitively to the same site of β-dystroglycan, and excessive Cav-3 on sarcolemma will block the interaction of dystrophin with β-dystroglycan, which is another reason for the disruption of the DGC. It is known that fast-twitch glycolytic fibers are more sensitive and vulnerable to contraction-induced small tears than slow-twitch oxidative fibers under a variety of diseased conditions. Accordingly, the fast glycolytic αW fibers must be easy with rapid damage of sarcolemma corruption seen in chicken muscular dystrophy, but the slow oxidative fibers are able to escape from these damages.


Sign in / Sign up

Export Citation Format

Share Document