scholarly journals Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex

Author(s):  
Philipp Berens
2013 ◽  
Vol 749 ◽  
pp. 333-337
Author(s):  
Shu Li Chen ◽  
Zhi Zhong Wang ◽  
Li Shi ◽  
Hong Wan ◽  
Xiao Ke Niu

Phase is an important feature of the local field potential (LFP) and plays a significant role in transmission and processing information in visual system. In this paper, the LFP of Long Evans rats primary visual cortex is recorded by the microelectrode array through the visual stimuli of the checkerboard and different orientation gratings. Then, a multi-mode phase extraction model based on the firing spikes was built. We found that neurons selective orientation information using the third intrinsic mode functions of local field potential during firing spikes.


2011 ◽  
Vol 12 (S1) ◽  
Author(s):  
Alberto Mazzoni ◽  
Christoph Kayser ◽  
Yusuke Murayama ◽  
Juan Martinez ◽  
Rodrigo Quian Quiroga ◽  
...  

2019 ◽  
Author(s):  
Agrita Dubey ◽  
Supratim Ray

AbstractElectrocorticogram (ECoG), obtained from macroelectrodes placed on the cortex, is typically used in drug-resistant epilepsy patients, and is increasingly being used to study cognition in humans. These studies often use power in gamma (30-70 Hz) or high-gamma (>80 Hz) ranges to make inferences about neural processing. However, while the stimulus tuning properties of gamma/high-gamma power have been well characterized in local field potential (LFP; obtained from microelectrodes), analogous characterization has not been done for ECoG. Using a hybrid array containing both micro and ECoG electrodes implanted in the primary visual cortex of two female macaques, we compared the stimulus tuning preferences of gamma/high-gamma power in LFP versus ECoG and found them to be surprisingly similar. High-gamma power, thought to index the average firing rate around the electrode, was highest for the smallest stimulus (0.3° radius), and decreased with increasing size in both LFP and ECoG, suggesting local origins of both signals. Further, gamma oscillations were similarly tuned in LFP and ECoG to stimulus orientation, contrast and spatial frequency. This tuning was significantly weaker in electroencephalogram (EEG), suggesting that ECoG is more like LFP than EEG. Overall, our results validate the use of ECoG in clinical and basic cognitive research.


2021 ◽  
Author(s):  
Hiroshi Tamura

AbstractNeuron activity in the sensory cortices mainly depends on feedforward thalamic inputs. High-frequency activity of a thalamic input can be temporally integrated by a neuron in the sensory cortex and is likely to induce larger depolarization. However, feedforward inhibition (FFI) and depression of excitatory synaptic transmission in thalamocortical pathways attenuate depolarization induced by the latter part of high-frequency spiking activity and the temporal summation may not be effective. The spiking activity of a thalamic neuron in a specific temporal pattern may circumvent FFI and depression of excitatory synapses. The present study determined the relationship between the temporal pattern of spiking activity of a single thalamic neuron and the degree of cortical activation as well as that between the firing rate of spiking activity of a single thalamic neuron and the degree of cortical activation. Spiking activity of a thalamic neuron was recorded extracellularly from the lateral geniculate nucleus (LGN) in male Long-Evans rats. Degree of cortical activation was assessed by simultaneous recording of local field potential (LFP) from the visual cortex. A specific temporal pattern appearing in three consecutive spikes of an LGN neuron induced larger cortical LFP modulation than high-frequency spiking activity during a short period. These findings indicate that spiking activity of thalamic inputs is integrated by a synaptic mechanism sensitive to an input temporal pattern.Significance StatementSensory cortical activity depends on thalamic inputs. Despite the importance of thalamocortical transmission, how spiking activity of thalamic inputs is integrated by cortical neurons remains unclear. Feedforward inhibition and synaptic depression of excitatory transmission may not allow simple temporal summation of membrane potential induced by consecutive spiking activity of a thalamic neuron. A specific temporal pattern appearing in three consecutive spikes of a thalamic neuron induced larger cortical local field potential modulation than high-frequency spiking activity during a short period. The findings indicate the importance of the temporal pattern of spiking activity of a single thalamic neuron on cortical activation.


Sign in / Sign up

Export Citation Format

Share Document